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Abstract—In this paper, the synchronization of N-coupled
multi-scroll attractors Genesio & Tesi 3-D chaotic oscillators
connected in irregular topology is presented. Synchronization of
coupled Genesio & Tesi 3-D chaotic oscillator showing2× 2× 2,
2 × 5 × 5 and 3 × 6 × 6 scroll with and without master node
coupling is achieved based on a coupling matrix from complex
systems theory. The oscillators of the complex networks interact
to each other only through one state of each system. Numerical
simulations are provided to verify the effectiveness of this method.

I. INTRODUCTION

Chaotic oscillators have received lots of attention in the
last decade because of their potential application in private
communications. Chaotic signals have been successfully used
in data encryption due to their irregular forms. These systems
have attracted the interest of the researchers who have studied
extensively, probably the Chua’s oscillator is the most well-
know and implemented in the f eld of communications [1].
Among the variety of oscillators that have been reported, it is
of special interest those who show scroll attractors, like Chua’s
oscillator (doble scroll) that has been generalized multiple
times based on two cathegories: those in amending the function
nonlinear and those that increase the system dimension [2].
In somewhat different systems, alternative models have been
generated that have been shown to generate n-scroll attractors.
These dynamic models are part of the family called grid scroll
attractors. So far 3 types have been reported in which these
attractors have qualif ed:

• scroll grid attractors 1-D
• scroll grid attractors 2-D
• scroll grid attractors 3-D

Chaotic synchronization has received increasing attention
from researchers in the last decade. Since Pecora and Carroll
synchronizing two identical chaotic systems with different
initial conditions [4], chaotic synchronization was intensively
studied. Many methods have been proposed to achieve syn-
chronization between two chaotic systems, i.e. Pecora-Carroll
(PC) method [4], Chaotic syncronization using observer [5],
[6], Output synchronization problem (OSP) [7]. In this paper
we synchronize N-coupled chaotic systems applying a law of
control based on a coupling matrix only in one state.

In this paper, the oscillators whose name reported is a new
family of n-scroll attractors are used, which for simplicity will
be called Genesio & Tesi oscillators investigators to whom they
owe their existence. R. Genesio and A. Tesi developed and
proposed a chaotic system in order to examine the harmonic
balance method to determine the existence and location of the
chaotic behavior in 1992 [2], [3]. R. Genesio and A. Tesi
successfully applied the method and proved that the model
exhibited chaos [2], [3]. A generalization of the original model
of Genesio & Tesi [3] to generate n-scroll was reported in [1].
Such generalization consisted in modifying the nonlinearity of
the original model.

This paper is organized as follow: Section II a brief review
on synchronization of complex dynamical networks is given.
In Section III, the problem of synchronization in N-coupled
chaotic systems in irregular networks is exposed as well as the
model of multi-scroll attractors Genesio & Tesi 3-D system
which will be used as fundamental nodes to compose the
irregular networks; the corresponding simulation results are
provided also in this section. Finally, some conclusions are
given in Section IV.

II. COMPLEX NETWORKS

A complex network is def ned as an interconnected set of
nodes (two or more), where each node is a fundamental unit,
with its dynamic depending of the nature of the network. Each
node is def ned as follows

ẋi = f(xi) + ui1, xi(0) = ci, i = 1, 2, . . . , N, (1)

where xi = [xi1 xi2 . . . xin] ∈ ℜn are the state variables of
the node i, ci are the initial conditions and ui establishes the
synchronization between two or more nodes and is def ned as
follows [8]

ui1 = c

N
∑

j=1

aijΓxj , i = 1, 2, . . . , N, (2)

the constant c positive def nite represents the coupling strength
and Γ is a constant matrix linking coupled state variables.
In this matrix, two nodes are linked through their ith state
variables. Assume that Γ = diag(r1, r2, . . . , rn) is a diagonal
matrix with ri = 1 for a particular i and rj = 0 for j 6= i.
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(a) (b)

Fig. 1. Complex networks with irregular topologies: (a) Complex network
with 9 oscillators without master oscillator, (b) Complex network with 9
oscillators with master oscillator (oscillator 1).

The matrix A = (aij) ∈ ℜN×N is the coupling matrix
which shows a connection between node i and j, then aij = 1,
otherwise aij = 0 for i 6= j. The diagonal elements of A are
def ned as

aii = −

N
∑

j=1,j 6=i

aij = −

N
∑

j=1,j 6=i

aji i = 1, 2, ..., N. (3)

The dynamical complex network (1) and (2) is said to
achieve synchronization if x1(t) = x2(t) = . . . = xn(t),
as t → ∞. The complexity of the network refers to the
characteristics of the nodes or network topology.
It is considered a network with N identical multi-scroll attrac-
tors Genesio & Tesi 3-D as node. The topology of the complex
network is def ned as a connection among each oscillator, with
a regular or irregular pattern. In this paper, it is considered only
the irregular topologies. In Fig. 1 it is shown two irregular
networks with and without master oscillator.

III. SYNCHRONIZATION OF N-COUPLED
MULTI-SCROLL ATTRACTOR GENESIO & TESI 3-D

SYSTEMS VIA COUPLING MATRIX
In this section, synchronization of irregular complex net-

works constituted of N-coupled multi-scroll attractor Genesio
& Tesi 3-D is achieved for diferent modalities of the attractor.
First, it is shown the set of equations that describes the multi-
scroll attractors Genesio & Tesi 3-D; then, necessary data
corresponding to each complex irregular network to achieve
synchronization is provided; f nally, synchronization results are
shown.

A. Multi-scroll attractor Genesio & Tesi 3-D

The model multi-scroll attractor Gen-
esio & Tesi 3-D is described by

ẋ = y − f1(y),

ẏ = z − f1(z),

ż = −ax− ay − az + af3(x),

(4)

where

f1(y) =

My
∑

i=1

g (−2i+1)

2

(y) +

Ny
∑

i=1

g (2i−1)

2

(y), (5)

f1(z) =

Mz
∑

i=1

g (−2i+1)

2

(z) +

Nz
∑

i=1

g (2i−1)

2

(z), (6)

Fig. 2. Irregular complex network with 5 oscillators and without master
oscillator reported in [9].

gθ(·) =











1, · ≥ θ, θ > 0,
0, · < θ, θ > 0,
0, · ≥ θ, θ < 0,
−1, · < θ, θ < 0,

(7)

f3(x) =

k−1
∑

l=1

γgnl
(x), (8)

where

nl = ρ+ 0.5 + (l − 1)(ρ+ ς + 1),

γ = ρ+ ς + 1,
(9)

ρ = | mini,j{ueq,y
i + ueq,z

j } |,

ς = | maxi,j{ueq,y
i + ueq,z

j } |,
(10)

and x, y, z ∈ ℜ, a = 0.8, ueq,y and ueq,z are the vectors for
the y and z variables related to the equilibrium points, the
Eq. (7) is the core function. The equilibrium points satisfy

{

x+ y + z = f3(x),
y = f1(y),
z = f1(z),

(11)

where the points for the y, z variables are given by

ueq,y = {−My, . . . , −1, 0, 1, . . . , Ny},

ueq,z = {−Mz, . . . , −1, 0, 1, . . . , Nz}.
(12)

With this nonlinearities the system produces k × (My +
Ny + 1)× (Mz +Nz + 1) scroll grid attractors [3].

B. Synchronization of irregular complex networks

1) Case I: First, it is synchronize complex networks of
identical multi-scroll attractor Genesio & Tesi 3-D. The cou-
pled network topology is illustrated in Fig. 2, where every
oscillator is described by Eqs. (4)-(10); considering a synchro-
nization scheme N-coupled multi-scroll attractor Genesio &
Tesi 3-D chaotic systems, the coupling matrix corresponding
to irregular topology is given by

A =











−3 1 1 1 0
1 −3 0 1 1
1 0 −3 1 1
1 1 1 −4 1
0 1 1 1 −3











. (13)
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This matrix A has its eigenvalues λ(A) =
{0, −3, −3, −5, 5}. The Gamma matrix is def ned
as Γ = diag(1, 0, 0) that means the synchronization is
achieved by the f rst state. According to Eq. (1), the control
laws ui1 for i = 1, . . . , 5 are given by the A matrix as follow

u11 = c(−3x1 + x2 + x3 + x4),

u21 = c(x1 − 3x2 + x4 + x5),

u31 = c(x1 − 3x3 + x4 + x5),

u41 = c(x1 + x2 + x3 − 4x4 + x5),

u51 = c(x2 + x3 + x4 − 3x5).

(14)

The f ve nodes are def ned as follow

ẋ1 = y1 − f1(y1) + u11,

ẏ1 = z1 − f1(z1),

ż1 = −ax1 − ay1 − az1 + af3(x1),
...

...
...

ẋ5 = y5 − f1(y5) + u51,

ẏ5 = z5 − f1(z5),

ż5 = −ax5 − ay5 − az5 + af3(x5).

(15)

The initial conditions for each oscillator are

(x1, y1, z1)(0) = (0.5, 0.5, 0.5),

(x2, y2, z2)(0) = (−0.1, 0.1, 0.1),

(x3, y3, z3)(0) = (−0.4, 0.4, 0.4),

(x4, y4, z4)(0) = (0.2, 0.2, 0.2),

(x5, y5, z5)(0) = (−0.3, 0.3, 0.3).

The coupling strength is obtained using the next stability
analysis that shows it is possible synchronizing a complex
network using a much smaller value that the given by the
Wang & Chen theorem [8].

Stability analysis: Due to the systems are identical, the
synchronization error between any pair of them is the same,
besides that, the control law ui1 is presented in every oscillator,
therefore, it is only needed to obtain the coupling strength c to
synchronize one pair of chaotic oscillators. Consider any pair
of oscillators that are coupled to each other from the complex
network in Fig. 2 and keep their conf guration, the equations
of the two coupled oscillators are given by (1)-(2) with N = 2,
and the elements aij correspond to the new coupling matrix
are obtained as explained in the previous section.

Now, the synchronization error is def ned as e1 =
x1 − x2, e2 = y1 − y2 and e3 = z1 − z2,
then, it is obtained the next synchronization error system

ė1 = −2ce1 + e2 − [f1(y1)− f1(y2)],

ė2 = e3 − [f1(z1)− f1(z2)],

ė3 = −ae1 − ae2 − ae3 + a[f3(x1)− f3(x2)].

(16)

When synchronization error system reaches equilibria the
variables involved reach synchrony, this means, the equation
(17) holds. At the equilibrium, nonlinearities fi(y), fi(z) and

fi(x) i = 1, 2 are equal and the subtraction is zero.
lim
t→∞

∥

∥[x1 y1 z1]
T − [x2 y2 z2]

T
∥

∥ = 0. (17)

The origin is the equilibrium point of the synchronization
error system (16) and it can be found by setting ė1 = ė2 =
ė3 = 0. For analyzing stability of the equilibrium point, it is
proposed the Lyapunov candidate function

V (e) =
1

2
(be2

1
+ 2e1e3 + be2

2
+ 4e2e3 + be2

3
). (18)

where b >
√
5 so that V (e) > 0. The derivative of V (e)

evaluated along the trajectories of the synchronization error
system (16) is given by

V̇ (e) = −(2bc+ a)e21 + (b − 3a)e1e2
−(a+ ba+ 2c)e1e3
+(1 + b− 2a− ba)e2e3
−2ae2

2
− (ba− 2)e2

3
.

(19)

The matrix form of (19) allows us to show that V̇ (e)
is negative def nite by showing that Q is positive def nite,
therefore

V̇ (e) = − [e1 e2 e3]Q

[

e1
e2
e3

]

, (20)

where

Q =





(2bc+ a) − 1

2
(b − 3a) q1

− 1

2
(b− 3a) 2a q2,
q1 q2 (ba− 2)



 . (21)

and
q1 = 1

2
(a+ ba+ 2c),

q2 = − 1

2
(1 + b− 2a− ba).

(22)

The determinant of principal minors of Q are given by

det(1st) = (2bc+ a),

det(2nd) = 2a(2bc+ a)−
1

4
(b − 3a)2,

det(3rd) = −2ac2 +
1

2
(4a2b2 − a2b3 − 5a2b

+2a2 + 2ab3 + 5ab2 − 17ab− 3a

−b2 − b3)c+
1

4
(2a2b2 − a2b3

−2a2b+ 3a2 + ab2 − 13ab− a+ b2).

(23)

The set of equations (23) is function of system parameter,
the free parameter b of the Lyapunov cadidate function and
the coupling strength c. It can be seen that (2bc+ a) > 0 and
2a(2bc + a) − 1

4
(b − 3a)2 > 0 for c > 0 so that, positive-

def niteness of matrix Q depends on 3rd principal minor.
Replacing the system parameter a = 0.8, the 3rd principal
minor becomes

−

(

8

5

)

c2 −

(

1

50
b3 −

139

50
b2 +

42

5
b+

14

25

)

c

+

(

−
4

25
b3 +

77

100
b2 −

73

25
b

)

,
(24)

that depends on the free parameter b of the Lyapunov candidate
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Fig. 3. View on 3-D state space 2 × 2 × 2 Genesio & Tesi 3-D attractor
obtained with My = 0, Ny = 1, Mz = 0, Nz = 1 and k = 2.
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Fig. 4. Evolution of the synchronization of the three states x, y and z of
each ascillator using c = 5.

function whose lower bound is b >
√
5 and the coupling

strength c. For this particular case, it is set b = 5 and Eq.
(24) becomes

−

(

8

5

)

c2 +

(

611

25

)

c−

(

441

50

)

, (25)

where it was found that Q > 0 for 0.3698 < c < 14.9052
so that V̇ (e) < 0 and the equilibrium point is asymptotically
stable. Using the value of the coupling strength c = 5 for this
case, synchronization of the variables involved and stability
of the synchronization error system (16) are guaranteed. The
Fig. 3 shows the multi-scroll attractor Genesio & Tesi 3-D
system for 5 oscillators and Fig 4 shows the three states of each
oscillator synchronizing. In Fig. 5 the phase portrait between
the f rst state of each oscillator is shown, here, synchronization
of the f rst states can be conf rmed.

2) Case II: Then, the complex network with topology
ilustrated in Fig 6 is synchronized, where each node is a multi-
scroll attractor Genesio & Tesi 3-D oscillator described by Eqs.
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4

Fig. 5. Conf rmed synchronization of f rst state of each oscillator xi vs. xj

i = 1, . . . , 4; j = 2, . . . , 5.

Fig. 6. Irregular complex network with 7 oscillators and without master
oscillator.

(4)-(10), the corresponding coupling matrix A is def ned as
follow

A =

















−2 1 1 0 0 0 0
1 −3 0 1 0 1 0
1 0 −3 0 1 0 1
0 1 0 −4 1 1 1
0 0 1 1 −3 0 1
0 1 0 1 0 −2 0
0 0 1 1 1 0 −3

















. (26)

This matrix eigenvalues are λ(A) =
{0, −1.1864, −1.5858, −3.4707, −4, −4.4142, −5.3429}.
The Gamma matrix is def ned as Γ = diag(0, 1, 0) that
means the synchronization is achieved by the second
state. According to Eq. (1), the control laws ui2, for
i = 1, . . . , 7 are given by the A matrix as follow
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u12 = c(−2y1 + y2 + y3),

u22 = c(y1 − 3y2 + y4 + y6),

u32 = c(y1 − 3y3 + y5 + y7),

u42 = c(y2 − 4y4 + y5 + y6 + y7),

u52 = c(y3 + y4 − 3y5 + y7),

u62 = c(y2 + y4 − 2y6),

u72 = c(y3 + y4 + y5 − 3y7).

(27)

The seven oscillators using the control laws are def ned as
follow

ẋ1 = y1 − f1(y1),

ẏ1 = z1 − f1(z1) + u12,

ż1 = −ax1 − ay1 − az1 + af3(x1),
...

...
...

ẋ7 = y7 − f1(y7),

ẏ7 = z7 − f1(z7) + u72,

ż7 = −ax7 − ay7 − az7 + af3(x7).

(28)

The initial conditions for each oscillator are

(x1, y1, z1)(0) = (0.1,−0.1, 0.1),

(x2, y2, z2)(0) = (0.2,−0.2, 0.2),

(x3, y3, z3)(0) = (0.3,−0.3, 0.3),

(x4, y4, z4)(0) = (0.4,−0.4, 0.4),

(x5, y5, z5)(0) = (0.5,−0.5, 0.5),

(x6, y6, z6)(0) = (0.6,−0.6, 0.6),

(x7, y7, z7)(0) = (0.7,−0.7, 0.7).

The coupling strength used for this case is c = 1 and it
was obtained by an analysis similar to the previous one. The
Fig. 7 shows the multi-scroll attractor Genesio & Tesi 3-D
system with 7 oscillators and Fig 8 shows the three states
of each oscillator synchronizing. In Fig. 12 the phase portrait
between the second state of each oscillator is shown, here,
synchronization of the second states can be conf rmed.

3) Case III: Finally, the last irregular complex network is
synchronized, the topology of the networks is illustrated in
Fig. 9, where each oscillator is a chaotic oscillator described by
Eqs. (4)-(10); considering a synchronization scheme N-coupled
multi-scroll attractor Genesio & Tesi 3-D chaotic oscillators,
the coupling matrix corresponding is given by

A =

























0 0 0 0 0 0 0 0 0
1 −4 1 0 1 0 1 0 0
1 1 −5 1 1 1 0 0 0
0 0 1 −2 0 1 0 0 0
0 1 1 0 −5 0 1 1 1
0 0 1 1 0 −3 0 1 0
0 1 0 0 1 0 −2 0 0
0 0 0 0 1 1 0 −2 0
0 0 0 0 1 0 0 0 −1

























. (29)

This eigenvalues of the matrix are λ1 = 0, λ2 = −0.1909,
λ3 = −0.8214, λ4 = −1.3328, λ5 = −1.8179, λ6 =
−3.6868, λ7 = −3.9150, λ8 = −5.6492 and λ9 = −6.5859.
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Fig. 7. View on 3-D state space 2 × 5 × 5 Genesio & Tesi 3-D attractor
obtained with My = 2, Ny = 2, Mz = 2, Nz = 2 and k = 2.
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Fig. 9. Irregular complex network with 9 oscillators and with master
oscillator.

The Gamma matrix as in the f rst synchronization, is
def ned as Γ = diag(1, 0, 0) that means the synchronization
is achieved by the f rst state. According to Eq. (1), the control
laws ui1 for i = 1, . . . , 9 are given by the A matrix as follow
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u11 = 0,

u21 = c(x1 − 4x2 + x3 + x5 + x7),

u31 = c(x1 + x2 − 5x3 + x4 + x5 + x6),

u41 = c(x3 − 2x4 + x6),

u51 = c(x2 + x3 − 5x5 + x7 + x8 + x9),

u61 = c(x3 + x4 − 3x6 + x8),

u71 = c(x2 + x5 − 2x7),

u81 = c(x5 + x6 − 2x8),

u91 = c(x5 − x9).

(30)

The f rst oscillator that is the master node has no change
because of its control law is zero and it is def ned by

ẋ1 = y1 − f1(y1),

ẏ1 = z1 − f1(z1),

ż1 = −ax1 − ay1 − az1 + af3(x1).

(31)

The eight nodes left are def ned as follow

ẋ2 = y2 − f1(y2) + u21,

ẏ2 = z2 − f1(z2),

ż2 = −ax2 − ay2 − az2 + af3(x2),
...

...
...

ẋ9 = y9 − f1(y9) + u91,

ẏ9 = z9 − f1(z9),

ż9 = −ax9 − ay9 − az9 + af3(x9).

(32)

The initial conditions for each oscillator are

(x1, y1, z1)(0) = (−0.5, 0.50.5),

(x2, y2, z2)(0) = (−1, 1, 1),

(x3, y3, z3)(0) = (−1.5, 1.5, 1.5),

(x4, y4, z4)(0) = (−2, 2, 2),

(x5, y5, z5)(0) = (−2.5,−2.5,−2.5),

(x6, y6, z6)(0) = (0.5,−0.5,−0.5),

(x7, y7, z7)(0) = (1,−1,−1),

(x8, y8, z8)(0) = (1.5,−1.5,−1.5),

(x9, y9, z9)(0) = (2,−2,−2).

The coupling strength used for this case is c = 9 and
it was obtained as in previous cases. The Fig. 10 shows
the multi-scroll attractor Genesio & Tesi 3-D system with 9
oscillators and Fig. 11 shows the three states of each oscillator
synchronizing. The phase portrait between the f rst state of
each oscillator is divided into three parts that are shown in
Fig. 13, 14 and 15, here, synchronization of the f rst states can
be conf rmed.

IV. CONCLUSION

In this paper the synchronization of N-coupled irregular
network is achieved using the complex network theory. It
was used a coupling signal only in one state of the system
and adjusting the coupling strength c the synchronization is
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Fig. 13. Conf rmed synchronization of f rst state xi vs xj i = 1, . . . , 4;
j = 2, . . . , 5.
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Fig. 14. Conf rmed synchronization of f rst state xi vs xj i = 1, . . . , 4;
j = 6, . . . , 9.

achieved in multi-scroll attractor Genesio & Tesi 3-D systems
for different modality of the attractor. The proposed synchro-
nization law has the advantage that is simply to develop and
the network can be synchronized applying this law only in
one state of the system. It can be observed the convergence in
each state of the systems and the error system decay towards
zero as t → ∞. Simulations show the effectiveness of the
proposed synchronization scheme. There were synchronized
three different complex networks with irregular topology for
different modality of the attractor of multi-scroll Genesio &
Tesi 3-D system using a coupling strength obtained by an
alternative stability analysis that is, for many cases, smaller.
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