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1 Introduction 
The applications of fractional calculus have 

attracted more attention in the past few years 

because of significant advantage of the fractional 

order models in comparison with integer order 

models. In addition, the fuzzy theory becomes a 

strong tool for modeling uncertain problems. A 

fuzzy differential equation may be viewed as a type 

of uncertain differential equations in which the 

uncertain values of parameters, coefficients, and/or 

boundary conditions are taken into account as fuzzy 

numbers.  In fact, most problems in nature are 

indistinct and uncertain, therefore the models rule 

are important.   

The concept of the fuzzy derivative was first 

introduced by Chang and Zadeh [6]. The fuzzy 

integral was introduced by Dubois, Prade [2], it was 

followed by many authors, both types fuzzy 

differential equations and integro differential 

equations have been studied extensively.  

 

Over the years, there are many studies of different 

fractional  systems have been introduced in various 

fields [27]  Hajighasemi et.al. [4] investigated 

existence and uniqueness of solutions for fuzzy 

Volterra  integrodifferntial equations with fuzzy 

kernel function. Ishak and Chaini [5]   proposed the 

extended trapezoidal method to solve fuzzy initial 

value problem that has first order. Hasan & Hussien 

[14] applied the generalized spline technique and 

Caputo differential derivative to solve second kind 

of fractional integro-differential equations.  They 

Compared of the applied method with exact 

solutions reveals that the method was tremendously 

effective. [13] introduced a new class of cubic 

spline function approach to solve fuzzy initial value 

problems efficiently. Also, the convergence of this 

method was shown. [26] Jaafar presents techniques 

of speech scrambling based-fractional order chaotic 

system which is used due to many properties. 

 . 

[20]  studied the Legendre wavelet is to approximate 

the solution of fuzzy fractional integro-differential 

equation. They have considered the Caputo 

differentiability concept based on the 

differentiability to solve fuzzy fractional integro 

differential equations. Hasan [24] derives the 

formulae of Sumudu transformation for linear 

fractional differential equations. Hasan, & Nasif 

[25]  determine  a solution of nonlinear integral and 

integro-differential equations using two methods 

Laplace transform series decomposition method and 

Sumudu transform series decomposition method. 

 

A new class of fuzzy functions called fuzzy 

fractional integro differential equations is 

considered. Some numerical methods such as cubic 

spline and exponential spline  have been used to 

determine the solutions of theses equations. We 

extend these numerical techniques to find the 

optimal solutions. Generalized exponential spline 

technique is used for this.  
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One of our intentions is to prove the uniqueness of 

the solution of a fuzzy fractional integro-differential 

equation. 

The results shown that Exponential spline method is 

more accurate in terms of absolute error.  Based on 

the parametric form of the fuzzy number, the integro 

differential equation is contacted in to two systems 

of the second kind. Illustrative examples are given 

to demonstrate the high precision and good 

performance of the new class. Graphical 

representations reveal the symmetry between lower 

and upper cut represent of fuzzy solutions and may 

be helpful for a better understanding of fuzzy model 

artificial, intelligence, medical science, quantum.   

The study of fuzzy fractional integro differential 

equations   is considered as a new branch of fuzzy 

mathematics. The analytical methods for finding the 

exact solutions of fuzzy fractional integro 

differential equations is very difficult, so the 

numerical technique is the best way to resort to it. 

The aims of this study to improve the accuracy of 

the numerical solutions of fuzzy fractional integro-

differential equations. The exponential spline 

method has been to be able to be solve these 

equations but current practice has less accuracy with 

error in approximating the solution for large step 

size. We proposed extended cubic spline technique 

to solve fuzzy fractional integro-differential 

equations numerically.  The results are expected to 

be more accurate as compared to be existing 

method.  

The contributions of this paper as follows, we derive 

an efficient method for computing the approximate 

solutions of proposed model, and discover some 

properties which related between fuzzy theory and 

fractional integro-differential equations. Also, we 

show that proposed technique contributes 

effectively to determination of approximate 

solutions for fuzzy equations.          

The paper is organized as follows: section 2. 

contains the Preliminaries. In section 4. 

methodology description for solving fuzzy 

fractional integro-differential equations is given. In 

section 4, example is presented. Conclusion of this 

paper is shown in Section 5.   

 

2 Preliminaries and notations  
In this section, we introduce notations, 
definitions, and preliminary results, which will 
be used throughout this work. we use the 
following notations: 𝑦(𝑡𝑛) and  𝑦𝑛 are exact 
solution and approximate solution respectively 
in time 𝑡𝑛,  the space C( [a, b] × [0,1]; L2(R)) the 
Banach space of all fuzzy real-valued continuous 

functions from[a, b] into L2(R),  the norm is 
defined as   
‖(𝑋(𝑟, 𝑡)‖X

2 =

Sup
0≤𝑟≤1

max{(∫ |𝑋(𝑟, 𝑡)|
2
𝑑𝑡 

𝑏

𝑎
)
0.5

, (∫ |𝑋(𝑟, 𝑡)|
2
𝑑𝑡 

𝑏

𝑎
)
0.5

}

.  A fuzzy number 𝞶 is a fuzzy set that normal, 
fuzzy convex, upper semi-continuous and 
compactly supported fuzzy sets which defined 
over the real line [12].  For 0 < 𝑟 ≤ 1 
Any fuzzy number 𝞶 can be represent by the 

following parametric forms (ν(𝑟), ν(𝑟)) , 0 ≤ 𝑟 ≤

1.  That satisfies  ν(𝑟) is non-decreasing and 
bounded left over 0 ≤ 𝑟 ≤ 1 and  ν(𝑟) is a 
bounded left continuous and non-increasing over 
0 ≤ 𝑟 ≤ 1. Also, for each r∈ [0,1] then  ν(𝑟) ≤
ν(𝑟).  The r-level set is defend as  [𝑢]𝑟 =
{𝑠; 𝑢(𝑠) ≥ 𝑟},   0 ≤ 𝑟 ≤ 1. Consequently,  [𝑢]𝑟 can 
be written as close interval  [𝑢]𝑟 = [𝑢 (𝑟),  𝑢(𝑟)]. 

The Hausdorff distance between fuzzy numbers 
𝑢 𝑎𝑛𝑑 𝑣 is given by  

𝑑(𝑢, 𝑣) = [∫ (u(𝑟) − v(𝑟))
2
𝑑𝑟 + ∫ (u(𝑟) −

1

0

1

0

v(𝑟))
2
𝑑𝑟]

0.5

  where 𝑑 is the Hausdorff metric. If 

we denote ℛ𝑓𝑢 is a set of all fuzzy numbers,  then  

(ℛ𝑓𝑢 , d) is complete, separable and locally 

compact metric space.  
Proposition (2.1) [8]: If a fuzzy function 

𝒫: [𝑎, 𝑏] × [0,1] → 𝑋  , 𝒫(𝑡, 𝑟) = (𝒫(𝑡, 𝑟), 𝒫(𝑡, 𝑟)) 

is differentiable then 𝒫(𝑡, 𝑟) 𝑎𝑛𝑑 𝒫(𝑡, 𝑟) are 

differentiable functions and  𝒫′(𝑡, 𝑟) =

(𝒫′(𝑡, 𝑟), 𝒫
′
(𝑡, 𝑟)) 

Definition (2.1) [7]: For any partition 𝜇 =
{𝑎 = 𝑡0, 𝑡1, 𝑡2, … , 𝑡𝑚 = 𝑏 } and 𝜏𝑖 ∈ [𝑡𝑖, 𝑡𝑖+1]  , 𝑖 =
0,1,2,… , 𝑛 then the definite integral of 
a  function 𝒫 over [𝑎, 𝑏] is  
 ∫ 𝒫

𝑏

𝑎
(𝑡)𝑑𝑡 = lim

𝜗→0
ℳ𝜇                                           (1) 

(1)    
Where, 𝜗 = max{|𝑡𝑖+1 − 𝑡𝑖|, 𝑖 = 0,1,2,… , 𝑛 } and 

 ℳ𝜇 = ∑ 𝒫(𝜏𝑖)(𝑡𝑖+1 − 𝑡𝑖)
𝑚
𝑖=1  

In the case 𝒫 is a fuzzy  and continuous function  
then for each fuzzy parameter 0 ≤ 𝑟 ≤ 1,  its 
definite integral exists and also [7] 
 

{
 
 

 
 (∫ 𝒫

𝑏

𝑎
(𝑡, 𝑟)𝑑𝑡) = ∫ 𝒫

𝑏

𝑎
(𝑡, 𝑟)𝑑𝑡

(∫ 𝒫
𝑏

𝑎
(𝑡, 𝑟)𝑑𝑡) = ∫ 𝒫

𝑏

𝑎
(𝑡, 𝑟)𝑑𝑡

                       (2) 

 

 
 
(2) 
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Definition (2.2) [17]: let g ∈ C( [a, b] × [0,1];  𝑅). 
The fuzzy Caputo fractional derivative (DC

α) of a 
fuzzy-valued function g is defined as follows 
 DC

α g(t, r)

=

1

Г(n − α)
∫

g(n)(s, r)

(t − s)α−n+1
ds,   n − 1 < α < n ∈ N

t

a

g(n)(t) ,         α = n ∈ N  , 0 ≤ 𝑟 ≤ 1               

} 

 

 
(3)
) 

where Г is the well-known gamma function. 
 
Definition (2.3) [17]: The fuzzy Caputo fractional 
integral (IC

α) of of a fuzzy-valued function g∈
C( [a, b] × [0,1];  𝑅) is defined as follows  
 IC

α g(t, r)

=

1

Г(α)
∫

g(s, r)

(t − s)1−α
ds,   0 < α                    

t

a

 g(t, r) ,              α = 0  , 0 ≤ 𝑟 ≤ 1                 

} 

 

 
 
 
(4) 

Proposition (2.2)[18]: let g ∈ C( [a, b] × [0,1];  𝑅). 
The fuzzy Laplace transform ℒ of a fuzzy-valued 
function g is defined as follows 
 

ℒI0
αg(t, r) =

1

sα
 ℒg(s, r) 

And  

 
(5) 

 
 ℒD0

αg(t, r) = sα ℒg(t, r)(𝑠)

−∑sα−k
n

k=1

g(k−1)(0) 

 

 
(6) 

Where,  α > 0 and  n = ⌈α⌉.  
Definition (2.4) [18]: The Mittag-Leffler function 
Eα,β(z) for any α, β > 0  is defined as follows  

 
Eα,β(z) = ∑

zm

Г(mα + β)

∞

m=1

 

 

 
(7) 

Proposition (2.3)[18]: The following relations are 
hold for any α , t, δ, 𝛽 > 0 and λ ∈ C  
 1. If  y(t) = Eα(−δ t

α) then  ℒy(t) =
λα−1(λα − δ)−1  

2. 
d

dr
Eα(−δ r

α) = ∑
(−δ)mrαm−1

Г(mα)
∞
m=1  

3. If  y(t) = 𝑡𝛼−1 𝐸𝛽,𝛼(𝑎𝑡
𝛽) 

 then  ℒy(t) = λβ−α(λβ − 𝑎)
−1

 

 

 
 
 
(8) 

Definition (2.5) [21] Let X be a universal set. 
Then, the partial ordering "≤" on X such that u =

(u(r), u(r)) and  ν = (ν(r), ν(r)) , 0 ≤ r ≤ 1  are 

fuzzy numbers is defined as 

 
u ≤ ν  ↔   {

u(r) ≤ ν(r)

u(r) ≤ ν(r)
   𝑓𝑜𝑟 𝑎𝑙𝑙 0 ≤ r

≤ 1  

 
(9) 

we use the notation (𝑋,≤) to refer to  partially 
ordered set.  It is proved that X is a complete 
metric space with the distance d. 
Definition (2.6) [22] Let (𝑋, ≤) be a partially 
ordered set and 𝒫: 𝑋 → 𝑋. Then 𝒫 is monotone 
non-decreasing if, it satisfies 
 u ≤ ν  ↔   {𝒫(u) ≤ 𝒫(ν)   For all u, ν ∈ 𝑋  
Theorem (2.4) [23] Let (𝑋,≤) be a partially 
ordered set and (𝑋, d) be a complete metric 
space. Suppose that  𝒫: 𝑋 → 𝑋  is a monotone 
non-decreasing mapping and there exists Ҝ∈
[0,1)  such that  
 𝑑(𝒫(u), 𝒫(ν)) ≤ Ҝ 𝑑(u, ν),   for all u, ν ∈ 𝑋 𝑎𝑛𝑑 u ≥ ν  
Then 𝒫 has a unique fixed point 𝜔 ∈ X and 
{𝒫𝑛(u)}𝑛∈𝑁   → 𝜔 for each  u ∈ 𝑋. 
 

3 PROBLEM DESCRIPTION 
In this section, first we introduce a fuzzy fractional 

integro-differential equation and then we prove that 

this equation has a uniqueness solution. Consider 

the following fuzzy initial value problem:  

 

 

{
 
 

 
 DC

α𝑦(𝑡, 𝑟) = 𝑔(𝑡, 𝑟) 𝑦(𝑡, 𝑟) + 𝑓(𝑡, 𝑟)

+∫ 𝑘(𝑡, 𝑠)𝑦(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎

𝑦(𝑎) = 𝑦0(𝑟)

 

 

                  

 

(10) 

Where, DC
α is a Caputo fractional derivative of order 

0 < α ≤ 1 which defined on  [𝑎, 𝑏] and is already 

given,  𝛽  > 0,   r is a fuzzy parameter with values in 
[0,1], 𝑘(𝑡, 𝑠) over  𝑠, 𝑡 ∈ [𝑎, 𝑏] is the kernel of this 

equation. 

In parametric form, equation (10) is represented as 

follows  

   

 

{
 
 
 
 

 
 
 
 
DC
α𝑦(𝑡, 𝑟) = 𝑔(𝑡, 𝑟) 𝑦(𝑡, 𝑟) + 𝑓(𝑡, 𝑟)

+𝛽∫ 𝑘(𝑡, 𝑠)𝑦(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎

DC
α𝑦(𝑡, 𝑟) = 𝑔(𝑡, 𝑟) 𝑦(𝑡, 𝑟) + 𝑓(𝑡, 𝑟)

+𝛽∫ 𝑘(𝑡, 𝑠)𝑦(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎

𝑦(𝑎) = 𝑦0(𝑟)

𝑦(𝑎) = 𝑦0(𝑟)

 

 

                  

 

 

(11) 

In addition, 𝑔(𝑡, 𝑟) 𝑦(𝑡, 𝑟) = 𝑔(𝑡, 𝑟)𝑦(𝑡, 𝑟) , 

𝑔(𝑡, 𝑟) 𝑦(𝑡, 𝑟) = 𝑔(𝑡, 𝑟)𝑦(𝑡, 𝑟) , 𝑔(𝑡, 𝑟) =
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(𝑔(𝑡, 𝑟), 𝑔(𝑡, 𝑟))  , 𝑘(𝑡, 𝑠)𝑦(𝑠, 𝑟) = 𝑘(𝑡, 𝑠)𝑦(𝑠, 𝑟) , 

𝑘(𝑡, 𝑠)𝑦(𝑠, 𝑟) = 𝑘(𝑡, 𝑠)𝑦(𝑠, 𝑟)  
Lemma (3.1) The fuzzy initial value problem (10) 

is equivalent to the following integral equation 

 y(t, r)  
= 𝑡𝛼−1 𝐸𝛼,𝛼(𝑔(𝑡, 𝑟)𝑡

𝛼) 𝑦0(𝑟)

+ 𝑡𝛼−1 𝐸𝛼,𝛼(𝑔(𝑟)𝑡
𝛼) 𝜑 (𝑡, 𝑟,∫ 𝑘(𝑡, 𝑠)𝑦(𝑠, 𝑟)𝑑𝑠

𝑏

𝑎

 ) 

 

 

 

 

 

(12) 

Where, 

𝜑(𝑡, 𝑟, X(t, r),∫ 𝑘(𝑡, 𝑠)𝑋(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎

 )

= 𝑓(𝑡, 𝑟) + 𝛽∫ 𝑘(𝑡, 𝑠)𝑋(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎

 

Proof.  We prove the case 𝑔(𝑟) =  𝑔(𝑡, 𝑟) such that 

the function g not depend on t, leaving the other 

case for discussion by other researchers. Using 

Laplace operator ℒ  to both side of equation  (10), 

provided g, f  and k are integrable  functions on 

[a,b], we have 

(λ𝛼 − 𝑔(𝑟))(ℒ y(t, r))(λ)  

= 𝑦0(𝑟) + (ℒ 𝜑 (𝑡, 𝑟,∫ 𝑘(𝑡, 𝑠)𝑋(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎

 )) (λ) 

Thus by Multiplying  both sides of above equation 

by (λ𝛼 − g(𝑟))
−1

, here, we assume  λ𝛼  ∈ ρ(𝑔(𝑟)), 

to guarantee the existence of the inverse of (λ𝛼 −

g(𝑟)), we get 

(ℒ y(t, r))(λ)  

= (λ𝛼 − 𝑔(𝑟))
−1
𝑦0(𝑟)

+ (λ𝛼

− 𝑔(𝑟))
−1
(ℒ 𝜑 (𝑡, 𝑟,∫ 𝑘(𝑡, 𝑠)𝑋(𝑠, 𝑟)𝑑𝑠

𝑏

𝑎

 )) (λ) 

Using Proposition (2.3) and taking Laplace inverse 

transform, we will get the result of this Lemma.    

Definition (3.1) An X- fuzzy  valued function  

y(t, r)  ∈ C( [a, b] × [0,1]; L2(R)) is  a solution of  

a fuzzy integro-differential equations  with initial 

condition (12),  if it  satisfies the integral equation 

(14). 

Now, for each 𝑟 ∈ [0,1], we define the operator P 

on the space C( [a, b] × [0,1]; L2(R))  by the 

following form:  

 P(y(r))(𝑡) = 𝑡𝛼−1 𝐸𝛼,𝛼(𝑔(𝑡, 𝑟)𝑡
𝛼) 𝑦0(𝑟) 

+𝑡𝛼−1 𝐸𝛼,𝛼(𝑔(𝑟)𝑡
𝛼) 𝜑 (𝑡, 𝑟,∫ 𝑘(𝑡, 𝑠)𝑦(𝑠, 𝑟)𝑑𝑠

𝑏

𝑎

 ) 

  

(15) 

 

Assume that the following conditions hold: 
(𝐻1) There exists a constant Ҫ1 > 0  such that for 

each  𝑦(𝑟) ∈ X,  we have 

 
‖𝜑(𝑡, 𝑟,∫ 𝑘(𝑤, 𝑠)𝑦(𝑠, 𝑟)𝑑𝑠

𝑏

𝑎

 )‖
𝑋

2

 

              ≤  Ҫ1(1 + ‖𝑦(𝑟)‖X
2)  

  
(𝐻2) There exists a constant Ҫ2 > 0  such that for 

each  𝑥(𝑟) , 𝑦(𝑟) ∈ X,  we have 

 

‖
‖

(

 
 
𝜑(𝑡, 𝑟,∫ 𝑘(𝑡, 𝑠)𝑥(𝑠, 𝑟)𝑑𝑠

𝑏

𝑎

 )

−𝜑 (𝑡, 𝑟,∫ 𝑘(𝑡, 𝑠)𝑦(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎

 )
)

 
 
‖
‖

𝑋

2

  

                            ≤  Ҫ2‖𝑥(𝑟) − 𝑦(𝑟)‖X
2  

Lemma (3.2) For any  𝑦  ∈ C( [a, b] ×
[0,1]; L2(R)) and 𝑟 ∈ [0.1], the operator 

P(y(r))(𝑡) is continuous on [a, b] in the 

space L2(R). 
Proof. Let t1, t2 ∈ [a, b] such that t1 < t2. Then for 

any  y ∈ C( [a, b] × [0,1]; L2(R)), we have 

 

‖( P y(𝑟))(t2) − (P y(𝑟)(t1))‖X
2  

= ‖(t2
𝛼−1 𝐸𝛼,𝛼(𝑔(𝑟)t2

𝛼)

− t1
𝛼−1 𝐸𝛼,𝛼(𝑔(𝑟)t 1

𝛼))𝑦0(𝑟)

+ t2
𝛼−1 𝐸𝛼,𝛼(𝑔(𝑟)t2

𝛼) 𝜑 (t2, 𝑟, ∫ 𝑘(t2, 𝑠)𝑦(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎

 )

− t1
𝛼−1 𝐸𝛼,𝛼(𝑔(𝑟)t1

𝛼) 𝜑 (t1, 𝑟, ∫ 𝑘(t1, 𝑠)𝑦(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎

 )‖
𝑋

2

 

Consequently, we obtain    

‖( P y(𝑟))(t2) − (P y(𝑟)(t1))‖X
2  

≤ |(t2
𝛼−1 𝐸𝛼,𝛼(𝑔(𝑟)t2

𝛼)

− t1
𝛼−1 𝐸𝛼,𝛼(𝑔(𝑟)t 1

𝛼))| ‖(𝑦0(𝑟))‖
𝑋

2

+ |(t2
𝛼−1 𝐸𝛼,𝛼(𝑔(𝑟)t2

𝛼))| ‖𝜑 (t2, 𝑟, ∫ 𝑘(t2, 𝑠)𝑦(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎

 )‖
𝑋

2

+ |(t1
𝛼−1 𝐸𝛼,𝛼(𝑔(𝑟)t 1

𝛼))| ‖𝜑 (t1, 𝑟, ∫ 𝑘(t1, 𝑠)𝑦(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎

 )‖
𝑋

2

 

Using the condition (𝐻1), we have  

‖( P y(𝑟))(t2) − (P y(𝑟)(t1))‖X
2  

≤ |(t2
𝛼−1 𝐸𝛼,𝛼(𝑔t2

𝛼)

− t1
𝛼−1 𝐸𝛼,𝛼(𝑔(𝑟)t 1

𝛼))| ‖(𝑦0(𝑟))‖
𝑋

2

+ |(t2
𝛼−1 𝐸𝛼,𝛼(𝑔(𝑟)t2

𝛼))|K2(1 + ‖𝑦(𝑟)‖X
2)  

+ |(t1
𝛼−1 𝐸𝛼,𝛼(𝑔(𝑟)t 1

𝛼))| K2(1 + ‖𝑦(𝑟)‖X
2)  

Hence, by using the strong continuity of 

the Mittag − Leffler  function  and Lebesgue’s 

dominated convergence theorem, we conclude that 

the right-hand side of the above inequalities tends to 

zero as t2→t1. Thus, we conclude P y(𝑟))(t) is a 

continuous on [a,b] in the space L2(R). 
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Theorem (3.3) Suppose that the assumptions (𝐻1), 
(𝐻2)are satisfied. Then for each 𝑟 ∈ [0,1], the fuzzy 

fractional integro-differential equations with its 

initial condition in  (10) has a unique solution on 

[a,b], provided that 

  γ = Ҫ2 |𝑏
𝛼−1 𝐸𝛼,𝛼(−𝑃(𝑟)𝑏

𝛼)| < 1   

(18) 

Proof:  

 To prove the existence of a fixed point of the 

operator  P by using Banach̓s fixed point theorem. 

Fix 𝑟 ∈ [0,1], suppose that  x(𝑟), y(𝑟)  ∈ C( [a, b] ×
[0,1]; L2(R)), then  

‖( P x(𝑟))(𝑡) − (P y(𝑟)(t))‖X
2  

= ‖(𝑡𝛼−1 𝐸𝛼,𝛼(−𝑔(𝑟)𝑡
𝛼) 𝑋0(𝑟)

+ 𝑡𝛼−1 𝐸𝛼,𝛼(−𝑔(𝑟)𝑡
𝛼) 𝜑 (𝑡, 𝑟, ∫ 𝑘(𝑡, 𝑠)𝑥(𝑠, 𝑟)𝑑𝑠

𝑏

𝑎

 ))

− (𝑡𝛼−1 𝐸𝛼,𝛼(−𝑔(𝑟)𝑡
𝛼) 𝑋0(𝑟)

+ 𝑡𝛼−1 𝐸𝛼,𝛼(−𝑔(𝑟)𝑡
𝛼) 𝜑 (𝑡, 𝑟, ∫ 𝑘(𝑡, 𝑠)𝑦(𝑠, 𝑟)𝑑𝑠

𝑏

𝑎

 ))‖

𝑋

2

 

Rewriting above equation as follows   

‖( P x(𝑟))(𝑡) − (P y(𝑟)(t))‖X
2  

= ‖(𝑡𝛼−1 𝐸𝛼,𝛼(−𝑔(𝑟)𝑡
𝛼) {𝜑 (𝑡, 𝑟,∫ 𝑘(𝑡, 𝑠)𝑥(𝑠, 𝑟)𝑑𝑠

𝑏

𝑎

 )

− 𝜑 (𝑡, 𝑟,∫ 𝑘(𝑡, 𝑠)𝑦(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎

 )})‖
𝑋

2

 

By using Cauchy–Schwarz inequality, we obtain 

  

   

‖( P x(𝑟))(𝑡) − (P y(𝑟)(t))‖X
2  

≤ |𝑡𝛼−1 𝐸𝛼,𝛼(−𝑔(𝑟)𝑡
𝛼)| ‖(𝜑 (𝑤, 𝑟,∫ 𝑘(𝑤, 𝑠)𝑥(𝑠, 𝑟)𝑑𝑠

𝑏

𝑎

 )

− 𝜑 (𝑤, 𝑟,∫ 𝑘(𝑤, 𝑠)𝑦(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎

 ))‖

𝑋

2

 

From the assumption (b) and Lemma (3.3.2), we 

obtain  

 

‖( P x(𝑟))(𝑡) − (P y(𝑟)(t))‖X
2  

≤ Ҫ2 |𝑡
𝛼−1 𝐸𝛼,𝛼(−𝑔(𝑟)𝑡

𝛼)|‖𝑥(𝑟) − 𝑦(𝑟)‖X
2  

Consequently, we get  

 

‖( P x(𝑟))(𝑡) − (P y(𝑟)(t))‖X
2  

≤ Ҫ2 |𝑏
𝛼−1 𝐸𝛼,𝛼(−𝑔(𝑟)𝑏

𝛼)|‖𝑥(𝑟) − 𝑦(𝑟)‖X
2  

 

Therefore, P is a contraction mapping on C( [a, b] ×
[0,1]; L2(R)). From contraction mapping principle 

theorem P has a unique fixed point, which is a 

solution of equation (12) on [a, b]. 

 

 

4 METHODOLOGY DESCRIPTION 
 

Suppose that the n + 1 data points, ti, i =
0,1, ,2, , , , . n are the knots and increasing in order 

are given.   Fuzzy generalized eyponential spline 

S(t, r) through the above data points can be defined 

as follows  

 S(t, r) = ∑ 𝑎𝑖(𝑟)e
βi(t−t0)𝑚

𝑖=1                              (13) 

 (19) 

Where, S(t, r) = (𝑆(𝑡, 𝑟), 𝑆(𝑡, 𝑟)) , 

 𝑎𝑖(𝑟) = (𝑎𝑖(𝑟), 𝑎𝑖(𝑟)) , 𝑖 = 1,2, … ,𝑚  and 𝛽 is 

arbitrary positive real values.  By replacing t by t0 

in equation (13), we have  

 
S(t0, r) =∑𝑎𝑖(𝑟)

𝑚

𝑖=1

 

 

(20) 

   Again, By replacing t by t1 in equation (13), we 

have  

 
S(t1, 𝑟) =∑𝑎𝑖(𝑟)e

βiℎ1

𝑚

𝑖=1

 (21) 

  

By substituting S(t. r) in the equation (13) into 

equation (10), we get 

 DC
α𝑦(𝑡, 𝑟) = 𝑔(𝑡, 𝑟) 𝑦(𝑡, 𝑟) + 𝑓(𝑡, 𝑟) +

∫ 𝑘(𝑡, 𝑠)𝑦(𝑠, 𝑟)𝑑𝑠
𝑏

𝑎
 

 
DC
α (∑𝑎𝑖(𝑟)e

βi(t−t0)

𝑚

𝑖=1

)   = 𝑔(𝑡, 𝑟) (∑𝑎𝑖(𝑟)e
βi(t−t0)

𝑚

𝑖=1

) 

+𝑓(𝑡, 𝑟) + ∫ 𝑘(𝑡, 𝑠)∑𝑎𝑖(𝑟)e
βi(s−t0)

𝑚

𝑖=1

𝑑𝑠
𝑏

𝑎

 

 

 

 

 

(22) 

  

   This implies 

 

 
∑𝑎𝑖(𝑟)DC

α

𝑚

𝑖=1

(eβi(t−t0)) −∑𝑎𝑖(𝑟)

𝑚

𝑖=1

 𝑔(𝑡, 𝑟)(eβi(t−t0)) 

−∑𝑎𝑖(𝑟)

𝑚

𝑖=1

∫ 𝑘(𝑡, 𝑠)eβi(s−t0)𝑑𝑠
𝑏

𝑎

=  𝑓(𝑡, 𝑟) 

 

 

 

 

 (23) 

From the definition of fractional derivative in 

Section 2., we have 

 

 DC
α(𝑒𝛽t) = 𝛽𝑡1−αE1,2−α(𝛽t)  

(14) 

Now, we use the following notations 
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∑𝑎𝑖(𝑟) {𝛽𝑖(t − t0)
1−αE1,2−α(𝛽𝑖(t − t0))

𝑚

𝑖=1

− 𝑔(𝑡, 𝑟)(eβi(t−t0))

− ∫ 𝑘(𝑡, 𝑠)eβi(s−t0)𝑑𝑠
𝑏

𝑎

}  =  𝑓(𝑡, 𝑟) 

 

 𝑀𝑖(𝑡) = 𝛽𝑖(t − t0)
1−αE1,2−α(𝛽𝑖(t − t0)) 

−𝑔(𝑡, 𝑟)(eβi(t−t0)) − ∫ 𝑘(𝑡, 𝑠)eβi(s−t0)𝑑𝑠
𝑏

𝑎

     . 𝑖 = 1,2,… ,𝑚  

 
(17)

 

  

Adding the initial condition of equation (12), as a 

new raw in the following matrices  

 

ℳ =

[
 
 
 
 
 

1 1 … 1
𝑀1(𝑡1) 𝑀2(𝑡1) … 𝑀𝑚(𝑡1).
.
.

.

.

.

.

.

.

.

.

.
𝑀1(𝑡𝑛) 𝑀2(𝑡𝑛) … 𝑀𝑚(𝑡𝑛)]

 
 
 
 
 

 

 

  

 (18)

 

 

Շ(𝑟) = [

𝑎1(𝑟)

𝑎2(𝑟)
⋮

𝑎𝑚(𝑟)

] 

  

(19)

 

 

 

𝐸(𝑟) = [

𝑦0(𝑟) 

𝑓(𝑡1, 𝑟) 
⋮

𝑓(𝑡𝑛, 𝑟) 

] 

 

(20)

 

  

 

For each  r ,  ℳ and 𝐸(𝑟) are constant matrices with 

dimensions (𝑛 + 1) × 𝑚 and (𝑛 + 1) ×
1 respectevely, Շ(𝑟) is unknown vector.  

The system will construct has 𝑛 + 1 equations and 

m coefficients such that  𝑛 ≥ 3 therefore,  

 ℳ𝜏ℳՇ(𝑟) = ℳ𝜏𝐸(𝑟)  

(29) 

where, ℳ𝜏 is transpose matrix of ℳ.  

 

5 ILLUSTRATIVE EXAMPLE  
To show the efficiency and accuracy of the propose 

technique with various values of step size, we 

consider the following two examples.      

Example (4.1): Consider the following integro-

differential equation as   

 

{
 
 
 

 
 
 

DC
𝛼𝑋(𝑡, 𝑟) +  𝑋(𝑡, 𝑟) =

((𝑟5 + 2𝑟)(1 + sinh(𝑡)), (6 − 3𝑟3)(1 + sinh(𝑡)))

+∫ (𝑡 − 𝑠)𝑋(𝑠, 𝑟)𝑑𝑠
1

0

𝑋(0, 𝑟) = ((𝑟5 + 2𝑟), (6 − 3𝑟3))   

,   𝑡 ∈ [0,1], 0 ≤ 𝑟 ≤ 1

 

                  

 

 

 

 

 

 

 

(15) 

Where, 0 < α ≤ 1 ,  the exact solution is given by  

 𝑋(𝑡, 𝑟) = 

(
(𝑟5 + 2𝑟)

(𝑡𝛼+1E2,α+2(𝑡
2) + 1), (6 − 3𝑟3)(𝑡𝛼+1E2,α+2(𝑡

2) + 1)
)  

                                                                          (16) 

(31) 

 

To compare we use the formula 𝑑(𝑋𝑛, 𝑋(𝑡𝑛)) =

Sup
0≤𝑟≤1

max(𝑋𝑛 − 𝑋(𝑡𝑛), 𝑋𝑛 − 𝑋(𝑡𝑛)) 

Let us compute The approximate solution of 

equation (15) by using generalized exponential 

spline method. Here, we take step size  ℎ = 0.1,
ℎ = 0.01 𝑎𝑛𝑑   ℎ = 0.001   
Consider equation (10), then  

𝑔(𝑡, 𝑟) = −1 , 𝑓(𝑡, 𝑟)

= ((𝑟5 + 2𝑟)(1 + sinh(𝑡)), (6

− 3𝑟3)(1 + sinh(𝑡)))  , 𝑎 = 0, 𝑏

= 1 𝑎𝑛𝑑  𝑘(𝑡, 𝑠) = (𝑡 − 𝑠) 
 

Approximate solutions 𝑋𝑛 , 𝑋𝑛 can be found by 

solving equation in  (16) (see Fig. 1., 2, 3) And 

Table 1, 2, 3,4) 

 
Table 1.  The fuzzy coefficients of equation (19) are 

computed  when 𝒉 = 𝟎. 𝟎𝟏, 𝒕 = 𝟎. 𝟑 , 𝛂 = 𝟎. 𝟗 

 
Table 2.  𝒉 = 𝟎. 𝟏,    α = 𝟎. 𝟗,  

t d 

0 0 
0.3 0.0036 

0.5 8.7676× 10−4 
0.7 0.0018 
0.9 0.0047 
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𝐓𝐚𝐛𝐥𝐞 𝟑.   𝒉 = 𝟎. 𝟎𝟏 ,          α = 𝟎. 𝟗 

t d 

0 0 
0.3 0.0024 
0.5 5.1927× 10−4 
0.7 8.9267× 10−4 
0.9 0.0024 

 

 
 

 

 
𝐓𝐚𝐛𝐥𝐞 𝟒.  𝒉 = 𝟎. 𝟎𝟎𝟏,     α = 𝟎. 𝟗 

t d 

0 0 
0.3 0.0023 
0.5 4.9968× 10−4 
0.7 7.8689× 10−4 
0.9 0.0021 
 

significance of TQM principles and implementation 

to adopt by project managers, helping them mitigate  

 

 

6 Conclusion 
 

In this article, a new class of exponential spline 

function method is introduced for solving fuzzy 

fractional integro-differential equations subject to 

fuzzy initial conditions. This technique proved its 

efficient and reliability in solving of these equations 

by providing the best approximate solutions. The 

numerical outputs obtained using the proposed 

technique are comparable to the exact solutions of 

our proposed model. This technique proved its 

efficient and reliability in solving of these equations 

by providing the best approximate solutions. The 

numerical outputs obtained using the proposed 

technique are comparable to the exact solutions of 

our proposed model.  We showed that the step size 

h   played fundamental and important role in 

reducing the error rate which resulting from the 

approximation of solutions for fuzzy integro-

differential Equations. Thus, our work in this paper, 

one can extend this method to solve fractional-order 

greater than 1 of fuzzy initial value problems.   

Finally, we would like to refer that the proposed 

equation can be applied to real models and used for 

data analysis in various systems such as medicine, 

economy, engineering, biomedical, and 

environmental.   
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