6c43ae09-7b73-45e8-9b51-61282d5c44da20220919093119015wseas:wseasmdt@crossref.orgMDT DepositWSEAS TRANSACTIONS ON FLUID MECHANICS2224-347X1790-508710.37394/232013http://wseas.org/wseas/cms.action?id=40363120223120221710.37394/232013.2022.17https://wseas.com/journals/fluids/2022.phpOn Practical Gas and Liquid Leakage Diameter Analytic Estimation for Vacuum ApplicationsJacobNaglerNIRC, Haifa, Givat Downes ISRAELThis paper presents analytical adaptive expressions for the two distinct cases of tank leakage estimations for gas (sonic and subsonic) and liquid flows under specific measurements data that assists to evaluate a circular hole/slit/orifice (crack) diameter and area. The analytic process is performed by equalization between analytic reformulation of the traditional mass flow formulations and the test formulation for mass flow dependent driven pressure differential over time multiplied by volume. In case of uniform environment conditions, the slit diameter might also represent the total sum of numerous exit holes/slits possible existence. Finally, a qualitative agreement was found between literature and current results in the context of orifice diameter versus pressure differential.9192022919202214716215https://wseas.com/journals/fluids/2022/a305113-010(2022).pdf10.37394/232013.2022.17.15https://wseas.com/journals/fluids/2022/a305113-010(2022).pdfA. Roth, Vacuum sealing techniques, Pergamon Press Ltd., (1966). Amesz, J., Conversion of leak flowrates for various fluids and different pressure conditions, EURATOM, (1966). 10.1116/1.568590Davy, J. D., Model calculations for maximum allowable leak rates of hermetic packages, Journal of Vacuum Science & Technology 12, 423 (1975). Keller, S. W., Determination of the leak size critical to package sterility maintenance, Phd Thesis, Faculty of Virginia Polytechnic Institute and State University (1998). Ghazi, C., Measurement of fluid and particle transport through narrow passages, Graduate College Dissertations and Theses 297 (2014) 10.1155/2020/6673107Hou, Q., Yang, D., Li, X., Xiao, G., Chun, S., Ho, M., Modified leakage rate calculation models of natural gas pipelines, Mathematical Problems in Engineering, 2020, Article ID 6673107, 1-10, (2020). 10.1002/pts.2594Yoshida, H., Hirata, M., Hara, T., Higuchi, Y., Comparison of measured leak rates and calculation values for sealing packages, Packag Technol Sci., 34: 557– 566. (2021). 10.1051/epjconf/201921302019Fojtášek, K., Dvořák, L., Krabica, L., Comparison and mathematical modelling of leakage tests, EPJ Web Conf. 213 02019 (2019). Rottländer, H., Umrath, W., Voss, G., Fundamentals of leak detection, Leybold Catalogue (2016). 10.3390/en10091399Wu, X., Li, C., He, Y., Jia, W., Dynamic modeling of the two-phase leakage process of natural gas liquid storage tanks, Energies 10, 1399 (2017). Nadalia, P., Li, Y., Liu, C., Modelling flow behavior of gas leakage from buried pipeline, EJERS, 5 (11) 1-6 (2020). 10.4236/ojfd.2020.102007Moreira, G., Magalhães, H. L. F., de Almeida Tavares, D. P. S., de Brito Correia, B. R., Leite, B. E., da Costa Pereira, A. B., de Farias Neto, S. R., de Lima, A. G. B., Fluid Leakage in Submerged Offshore Pipeline: An Analysis of Oil Dispersion in Seawater, Open Journal of Fluid Dynamics, 10 95- 121 (2020). 10.3389/fphy.2020.00066Irfan, M., Farooq, M. A., Iqra, T., A new computational technique design for EMHD nanofluid flow over a variable thickness surface with variable liquid characteristics. Front. Phys. 8 (66) 1-14 (2020). 10.1016/j.nucengdes.2017.08.031Plumecocq, W., Audouin, L., Joret, J. P., Pretrel, H., Numerical method for determining water droplets size distributions of spray nozzles using a two-zone model. Nuclear Engineering and Design, Elsevier, 324 67-77 (2017). 10.31274/rtd-20200803-287Mincks, L. M.0, Pressure drop characteristics of viscous fluid flow across orifices, Retrospective Theses and Dissertations, 20171 (2002). 10.3390/s20247281A. Tomaszewski, T. Przybylinski, M., Lackowski, Sensors 2020, 1-20, 7281 (2020). DOI: 10.3390/s20247281 M. M. Rahman, R., Biswas, W. I. Mahfuz, J. of Agric. Rural Dev. 2010, 7 (1), 151–156. DOI: 10.3329/jard.v7i1.4436 10.33915/etd.4796P. J. Spaur, Investigation of discharge coefficients for irregular orifices, Msc. Thesis, West Virginia University 2011. A. Guthrie, R. K. Weakerling, Vacuum equipment and techniques, McGRAWHill Book Pub. Inc 1949. R. L., Daugherty, J. B. Franzini, E. J. Finnemore, Fluid mechanics with engineering applications, 8th ed. p. 275, McGraw-Hill 1985. 10.1016/0009-2509(91)87017-7J. C., Kayser, R. L., Shambaugh, Chemical Engineering Science 1991, 46 (7). 1697-1711.DOI: 10.1016/0009- 2509(91)87017-77 A. H. Shapiro, The dynamics and thermodynamics of compressible fluid flow, 83-100, The Ronald Press Co. 1953. B. R. Munson, D. F. Young, T. H. Okiishi, Fundamentals of fluid mechanics, 3rd ed., John Wiley and Sons 1998. White, F. M. Fluid mechanics, 5th ed., McGraw-Hill 2003. Z. Mu, H. G. Zhang, Journal of Vibroengineering, 2017, 19 (7), 5434- 5447. DOI: 10.21595/jve.2017.17389