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Abstract: The paper investigates a system with rapidly oscillating coefficients and with a rapidly 
decreasing kernel of the integral operator. Previously, only differential problems of this type were 
studied in which the integral term was absent. The presence of an integral operator significantly 
affects the development of an algorithm for asymptotic solutions, for the implementation of which it is 
necessary to take into account essentially singularities generated by the rapidly decreasing spectral 
value of the kernel of the integral operator. In addition, resonances can arise in the problem under 
consideration (i.e., the case can be realized when an integer linear combination of the eigenvalues of 
the rapidly oscillating coefficient coincides with the points of the spectrum of the limiting operator 
over the entire considered time interval), as well as the case where the eigenvalue of the rapidly 
oscillating coefficient coincides with the points spectrum of the limiting operator. This case generates 
a multiple spectrum of the original singularly perturbed integro-differential system. A similar problem 
was previously considered in the case of a simple spectrum. More complex cases of resonance (for 
example, point resonance) require more careful analysis and are not considered in this article.  
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1. Introduction  
 
Various applied problems related to dynamic 
stability and the properties of media with a 
periodic structure lead to differential equations 
with rapidly oscillating coefficients. The 
presence of high-frequency terms in them 
prevents an efficient numerical calculation of 
approximate solutions. Therefore, such 
equations are first analyzed from the point of 
view of asymptotic methods in order to obtain 
the most efficient initial approximation, and 
then the well-known methods of numerical 
integration are applied. The most famous 
methods of asymptotic analysis equations with 
rapidly oscillating coefficients are the 

Feschenko-Shkil-Nikolenko splitting method 
[1,2,3] and the Lomov regularization method 
[4,5,6,7]. The first method was applied only to 
differential systems without an integral 
operator, while the second allows one to study 
differential problems in the presence of an 
integral term (see, for example, 
[8,9,10,11,12,13,14,15,16,17,18]). In this 
article, Lomov's regularization method is 
generalized to previously unexplored integro-
differential equations with rapidly oscillating 
coefficients and rapidly decreasing kernels of 
the form 

 
( )( ) ( )cosdz t

A t z g t B t z
dt
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       (1) 
0

0 0( , ) = , [ , ],z t z t t T   
where    1 2 1 2= , , ( ) = ( ), ( ) , ( ) > 0,z z z h t h t h t t  

  0( ) > 0 , , ( )t t t T g t    is the scalar function, 
( )A t  and ( )B t  are  2 2 -matrices, moreover 

2

0 1
( ) = ,

( ) 0
A t

t

 
 
 

 ( ) > 0t  is the frequency of 

the rapidly oscillating cosine,  0 0 0
1 2= , , > 0z z z   

is a small parameter. It is precisely such a 

system in the case 
0 0

( ) = 2 ( ), ( ) =
1 0

t t B t 
 
 
 

 

and of the absence of an integral term that was 
considered in [4,5,6,7]. The functions 
   1 = ,t i t      2 =t i t  form the spectrum 

of the limit operator  A t , the function 
 3 ( )t t   characterizes the rapid change in 

the kernel of the integral operator, and the 
functions    4 =t i t   and    5 =t i t  are 
associated with the presence of a rapidly 
oscillating cosine in system (1). Previously, 
such systems have not been considered. This 
paper is devoted to the generalization of the 
Lomov’s regularization method [4] to systems 
of the type (1). 

Problem (1) will be considered under the 
following conditions:  
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     02) = ,t t t t T     (i.e.  
       4 1 5 2,t t t t     ); 

3)  the relations  
         , = 0, , = , 1,2,3jm t m t t j     for 

all multi-indices  1 2 3= , ,m m m m   with 

 1 2 3 2 0, =1,2,3jm m m m m j      or are not 

fulfilled for any  0 , ,t t T  or are fulfilled 
identically on the whole segment  0 , .t T  

Here we denoted:  

        

    

1 2 3

3

=1

, , ,

, j jj

t t t t

m t m t

   

 




. 

It is clear that under condition 3) resonant 
multi-indices are exhausted by the following 
sets:  

     0 0= : , 0, 2, , ,m m t m t t T      

       0= : , , 2, , ,

=1,3.

j jm m t t m t t T

j

     
 

 

1.1 Preliminary considerations 

Functions 
   

0 0
3 4, ,

t t
i i

d d

t t
v e v e

     
 

  

 
 

 
participating in a rapidly oscillating cosine 
satisfy differential equations  

   

 

3 4
3 4

0

= , = ,

=1, = 3,4.j

dv dv
i t v i t v

dt dt

v t j

     
 

By adding them to system (1), we obtain the 
problem  
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(1 )  

where the notations are introduced:  
        1 2 3 4 1 2= , , , , = , ,0,0 ,v z z v v H t h t h t
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2 1 2 2
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= , = ,

0 0 0
A t B t

A t B t
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0 0( ) ( )
2

1 1 2
2 2

( , ) 0
( , ) = , = , = .

0 0

i t i tK t s
K t s e e

 

  
 

 
 
 

Thus, if     1 2= , , ,z z t z t   is a solution of the 

system (1), then       1 2 3= , , , , , ,v z t z t v t    

 4 ,v t  is a solution to a weakly nonlinear 

system  *1 , and vice versa. Hence, all 
singularities in the solutions of both systems are 
described by the spectrum of the matrix  1 .A t  
This matrix will be called the matrix of the 

extended limit operator of the problem (1). It 
would be possible to carry out an asymptotic 
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analysis of the problem  *1  instead of the 
analysis of problem (1), but when developing 
the corresponding algorithm of the 
regularization method, this will lead to complex 
calculations. Therefore, we do not go over to 
the system  *1 ,  but consider directly the 
system (1). 

Previously, we considered the case of a 
simple spectrum of the matrix  1 ,A t  i.e., the 
case      0 , .t t t t T     Here we consider a 
more complicated case      0= , .t t t t T     
In this case, the spectrum of the matrix  1A t  
will be multiple and, according to [19] (section 
3.6), the algorithm of the regularization method 
will change significantly. 

 
2. Regularization of the problem (1)  
 

We denote, as above, by  =j j    

independent on t  the quantities  0
1 = ,

i
t

e





 0
2 = ,

i
t

e





 and rewrite system (1) in the form  

 
1 ( )

0
( ) , ( , )

t

dt
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A t z e K t s z s ds
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0
0 0= ( ), ( , ) = , [ , ].h t z t z t t T        (2) 

We introduce regularizing variables (see [4])  

 
 

0

1= , =1,3
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      (3) 

and instead of problem (2) we consider the 
problem  
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0
, ( , , ) =

t

dt
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e K t s z s ds

  
 







    (4) 
0

= , =0 00
( ), ( , , ) | = , [ , ],t th t z t z t t T    

for the function  = , , ,z z t    where it is 
indicated (according to (3)): 

   1 2 3 1 2 3= , , , = , , .         It is clear that if 

 = , ,z z t    is the solution to problem (4), then 

the vector function  = , ,
t

z z t





 
 
 

 is an exact 

solution to problem (2), therefore, the problem 
(4) is expansion of the problem (2). However, it 
cannot be considered completely regularized, 
since the integral term  

    

 
 

= , = /
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, , | =

, ( , , )

t s s
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Jy J z t

s
K t s z s ds

  
 








 
 

has not been regularized in it. To regularize it, 
we introduce a class ,M

 asymptotically 
invariant with respect to the operator Jz  (see 
[4]; p. 62]). We first consider the space of 
vector functions  , ,z t   representable by sums  
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where the asterisk *  above the sum sign 
indicates that in it the summation for 2m   
occurs only over nonresonant multi-indices 

 1 2 3= , , ,m m m m  i.e. over 3

=0
.ii

m   Note that 
in (5) the degree of the polynomial with respect 
to exponentials je


 depends on the element z . 

In addition, the elements of space U  depend on 
constant constants  1 1=    and  2 2= ,    
which do not affect the development of the 
algorithm described below, therefore, 
henceforth, in the notation of element (5) of this 
space U , we omit the dependence on 

 1 2= ,    for brevity . We show that the class 

 = /= |
t

M U   
 is asymptotically invariant with 

respect to the operator .J  
The image of the operator J on the element 

(5) of the space U  has the form (  3 = 0,0,1e ):  

     
1 ( )3

0
0

, = ,

t

dt
s

t
Jz t e K t s z s ds
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e K t s z s e ds
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Integrating by parts, we have  
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Continuing this process further, we obtain the 
decomposition  
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Next, apply the same operation to the integrals:  
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Here it is taken into account that since 
  3 , 0,m e s   since by definition of space 

U , multi-indices 3.m  This means that the 
image of the operator J  on the element (5) of 
the space U  is represented as a series  
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It is easy to show (see, for example, [19], 
pages 291–294) that this series converges 
asymptotically for 0   (uniformly in 

0[ , ]t t T ). This means that the class M
 is 

asymptotically invariant (as 0  ) with 
respect to the operator .J  

We introduce the operators : ,R U U   
acting on each element  ,z t U   of the form 
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Let now  , ,z t    be an arbitrary continuous 

function in      0, , : Re 0, =1,3jt t T j      
with asymptotic expansion  
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converging as 0   (uniformly in 
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This equality is the basis for introducing an 
extension of the operator J  on series of the 
form (7):  
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Although the operator J  is formally defined, 
its usefulness is obvious, since in practice it is 
usual to construct the N -th approximation of 
the asymptotic solution of problem (2), in 
which only N -th partial sums of the series (7) 
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3. Iterative problems and their 

solvability in the space U . Solution of 

the first iterative problem   
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function of the space ,U  *z  is a well-known 
constant vector of a complex space 2 ,C  and the 
operator 0R  has the form (see  06 )  
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1, = ,

, = , =1,2 .
0,k j

k j
t t k j

k j
 





 

We introduce the scalar product (for each 
 0 ,t t T ) in the space :U   

       
3 *

,
0

=1 2
< , > < ,mmi

i

i m N
z

z w z t z t e z t e
 

 

   

       
3 *

,
0

=1 2
> =

def
mmi

i

i m N
w

w t w t e w t e
 

 

  

 
         

3

0 0
=1

, ,=
def

i i

i

z t w t z t w t 

 
 

    
*

2 min ,

, ,m m

m N N
z w

z t w t
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where we denote by  *,*  the ordinary scalar 
product in a complex space 2.  We prove the 
following statement. 

Theorem 1. Let conditions 1) and 2) are 

satisfied and the right-hand side 

         
3 *

,
0

=1 2
, = mmi

i

i m N
H

H t H t H t e H t e
 


 

    

of the system (11) belongs to the space .U  Then 

for the solvability of system (11) in U  it is 

necessary and sufficient that the identities  
      0< , , > 0, =1,2, ,k

kH t t e k t t T


      (12) 
hold. 

Proof. We will determine the solution to 
system (11) in the form of an element (5) of the 
space U : 

         
3 *

,
0

=1 2
, = .mmi

i

i m N
H

z t z t z t e z t e
 


 

    (13) 

Substituting (13) into the system (11), we have  

     
3

=1

i
i i

i

t I A t z t e


    

 

        
*

,

2
, mm

m N
H

m t I A t z t e



 

    

 

       3
0 3

0
, =

t

t
A t z t e K t s z s ds


  

 

       
3 *

,
0

=1 2
= .mmi

i

i m N
H

H t H t e H t e
 

 

    

Equating here separately the free terms and 
coefficients at the same exponents, we obtain 
the following systems of equations:  

     0 0= ,A t z t H t                0(14 )  

       = , =1,2;i i it I A t z t H t i     (14 )i  

     

     

3 3

3 3
0

, ,
t

t

t I A t z t

K t s z s ds H t

    

 
      3(14 )  

        
3

=0

, = ,

2 , .

m m

H j

j

m t I A t z t H t

m N m

  

   
  (14 )m  

Due to the invertibility of the matrix  A t , 
system ( 014 ) has a solution 

     1
0 0=z t A t H t . Since    3 =t t   is a 

real function, and the eigenvalues of the matrix 
 A t  are purely imaginary, the matrix 

   3 t I A t   is invertible and therefore system 
( 314 ) can be written as  

        
       

1
3 3

0
1

3 3 3

= ,

.

t

t
z t t I A t K t s

z s ds t I A t H t









   

    



  

(15)  

Due to the smoothness of the kernel 

      1
3 ,t I A t K t s



    and the 

heterogeneity      
1

3 3t I A t H t


    this 
Volterra integral system has a unique solution 
    2

3 0 , , .z t C t T C  

Systems  114 and  214  are solvable in the 

space   2
0 , ,C t T  if and only if the 

identities       0, 0 , , =1,2i iH t t t t T i     
hold. It is easy to see that these identities 
coincide with the identities (12). Further, since 
multi-indices 

3

=0 jj
m   in the systems 

(14 ),m
 then     , , =1,2,im t t i   so these 

systems are uniquely solvable in the space 
  2

0 , ,C t T C  in the form of functions  

        
1

= , ,

0 .

m m

H

z t m t I A t H t

m N




  

     (16)  

Thus, condition (12) is necessary and sufficient 
for the solvability of system (11) in space .U  
The theorem is proved. 

Remark 1. If identity (12) holds, then under 
conditions 1) and 2) system (11) has (see (15) –
(16)) the following solution in space :U   

         
3 *

,
0

=1 2
, = mmi

i

i m N
H

z t z t z t e z t e
 


 

   

         
2

1
0 12 2

=1

k
k k

k

z t t t e h t t e
 

       (17) 

         
*

,32
21 1 3

2
,mm

m N
H

h t t e z t e P t e
 


 

     

where     1
0 , ,k t C t T  C  are arbitrary 

functions,    1
0 0 3=1,2, = ( ),k z t A H t z t is 

the solution of the integral system (15) and the 
notation is introduced:  

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.9 Burkhan Kalimbetov, Valery Safonov

E-ISSN: 2224-2880 90 Volume 20, 2021



 
    
   

 
    
   

1 2 2 1
12 21

1 2 2 1

, ,
, ,

H t t H t t
h t h t

t t t t

 

   
 

 
 

       
1

,i i iP t t I A t H t


            (18) 

        
1

, .m mP t m t I A t H t


     
 
4. The unique solvability of the general 

iterative problem in the space U . The 

remainder term theorem  
 

We proceed to the description of the 
conditions for the unique solvability of system 
(11) in the space .U  Along with problem (11), 
we consider the system 

 
   

   

1 2
1 2

1

, =
2

, ,

g tz
Lw t e e

t

B t z R z Q t

 
  




   


      
(19)  

where  = ,z z t   is the solution (18) of the 

system (11),  ,Q t U  is the known function 
of the space U . The right-hand side of this 
system:  

 
   1 2

1 2,
2

g tz
G t e e

t

 
  


    

  
   1 , =B t z R z Q t   

 
       

3 *
,

0
=1 2

= [ ]mmi
i

i m N
z

z t z t e z t e
t

 

 


   


 
 

         
2

1 2
1 2 0

=12
i

i

i

g t
e e B t z t z t e

 
 


   


  

     
*

,
1

2
,mm

m N
z

z t e R z Q t



 


  


  

may not belong to the space ,U  if 

 = , .z z t U   Since  1, , , ,z
R z Q t U

t



 


 

then this fact needs to be checked for the 
function  

 
       1 2

1 2 0, [
2

g t
Z t e e B t z t

 
    

     
3 *

,

=1 2
] =mmi

i

i m N
z

z t e z t e
 

 

  

 
    1 2

0 1 2=
2

g t
B t z t e e

 
  

 
    

3
1 2

1 2
=1 2

i i
i

i

g t
B t z t e e

   
 

 
    

         
*

,1 2
1 2

2
.

2
mm

m N
H

g t
e e B t z t e
  
 

 

    

Function  , ,Z t U   since it has resonant 
exponents  

 
 

 
 

 
 

,,1 2 1
1 2 3= 1,1,0

,2
2 1 3

= | , 1 = , = 0 ,

1 = , = 0 ,

mm

m

m

e e e m m m

e m m m

   

 

 





  
therefore, the right-hand side 

     1, = , ,z
G t Z t R z Q t

t
  


  


of system 

(19) also does not belong to space .U  Then, 
according to the well-known theory (see [5], p. 
234), it is necessary to embed 

   ˆ: , ,G t G t    the right-hand side  ,G t   
of the system (19) in the space U . This 
operation is defined as follows. Let the function 
     ,

=0
, = N mm

m
G t w t e


   contain resonant 

exponentials, i.e.  ,G t   has the form 
3

0
=1

( , ) = ( ) ( ) i
i

i

G t w t w t e


  
 3

( , )

=0 | |=2:

( )
j j

j
j

N
m m

jj m m

w t e 



  
 

   ,

=2, , =0,3

.
N

mm

j
m m m j

w t e




   

Then  
3

0
=1

ˆ ( , ) = ( ) ( ) i
i

i

G t w t w t e


    

3

=0 | |=2:

( )
j

j

j j
j

N
m

j m m

w t e




    

   ,

=2, , =0,3

.
N

mm

j
m m m j

w t e




   

Therefore, the embedding operation acts only 
on the resonant exponentials and replaces them 
with a unit or exponents je



 of the first 
dimension according to the rule:  

     0

, ,0| = =1, | = , =1,3.j

j

m m

m me e e e j
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We now turn to the proof of the following 
statement. 

Theorem 2. Suppose that conditions 1) and 

2) are satisfied and the right-hand side  

     

   

3

0
=1

*
,

2

, = i
i

i

mm

m N
H

H t H t H t e

H t e U







 

 

 




 

of the system (11) satisfies condition (12). Then 

the problem (11) under additional conditions  
     0< , , > 0 , , =1,2,k

kG t t e t t T k


     (20)  
where 

     

   

3
0 =1

* ,
2

, = k
kk

mm

m N
Q

Q t Q t Q t e

Q t e







 

 






 

is the well-known vector function of the space 
,U  is uniquely solvable in .U  
Proof. Since the right-hand side of system 

(11) satisfies condition (12), this system has a 
solution in the space U  in the form (17), where  

    1
0 , , , =1,2k t C t T k  C  are arbitrary 

functions so far. We obey (18) the initial 
condition   *

0 ,0 = .z t z  We obtain 

   
2

0 0 *=1
= ,k kk

t t z   where is indicated  
   * 1

* 0 0 0=z z A t H t   

     
1

5 0 0 5 0t I A t H t


      
    
   

 
1 0 2 0

2 0
1 0 2 0

,H t t
t

t t




 
 

  

    
   

   
*

2 0 1 0
1 0 0

22 0 1 0

,
.m

m N
z

H t t
t z t

t t




   

 


  

Multiplying scalarly the equality 
   

2
0 0 *=1

=k kk
t t z    by  0j t  and taking into 

account the biorthogonality of the systems 
  k t  and   ,j t  we find the values 

    0 * 0= , , =1,2.k kt z t k   
Now we subordinate the solution (17) to the 

orthogonality condition (20). We write in more 
detail the right-hand side  ,G t   of system (19): 

       
2

0
=1

, [ k
k k

k

G t z t t t e
t


  


   


  

       1 2
12 2 21 1h t t e h t t e

 
   

 

     
*

,3
3

2
]mm

m N
H

z t e P t e
 

 

  

 

 
   1 2

1 22
g t

e e B t
 
   

 

     
2

0
=1

[ k
k k

k

z t t t e


   

 

       1 2
12 2 21 1h t t e h t t e

 
   

 

     
*

,3
3

2
]mm

m N
H

z t e P t e
 

 

  

 

     
2

1 0
=1

[ k
k k

k

R z t t t e


   

 

       1 2
12 2 21 1h t t e h t t e

 
     

       
*

,3
3

2
] , .mm

m N
H

z t e P t e Q t
 


 

    

Putting this function into the space ,U we will 
have  

       
2

0
=1

ˆ , [ k
k k

k

G t z t t t e
t


  


   


  

       1 2
12 2 21 1h t t e h t t e

 
     

     
*

,3
3

2
]mm

m N
H

z t e P t e
 

 

  

 

 
     1 2

1 2 0{ (
2

g t
e e B t z t
 
   

 

       
2

1
12 2

=1

k
k k

k

t t e h t t e
 

    

 

         
*

,32
21 1 3

2
}mm

m N
H

h t t e z t e P t e
 

 

 

   

 

         
2

1
1 0 12 2

=1
[ k

k k

k

R z t t t e h t t e
 

     

 

      32
21 1 3h t t e z t e


  

 

     
*

,

2
] , =mm

m N
H

P t e Q t



 

 

 

     

       

2

0
=1

1 2
12 2 21 1

= [ k
k k

k

z t t t e
t

h t t e h t t e



 

 

 


  


  



 

     

 
     

*
,3

3
2

2 1
1 1 1

]

{ (e
2

mm

m N
H

z t e P t e

g t
B t t t

 


  

 

  

 



 

   
2 1

1 12 2e h t t

  

 

       
2 22 2

2 21 1 2 2 2+e eh t t t t
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   1 2
2 1 1e t t

 
  


 

 

       1 2 1 2
1 21 1 1 2 2e eh t t t t

   
    

 
  

 

     

     

1 31 2
2 12 2 1 3

2 3 1 2
2 3 1 0 2 0

e e

e e e )

h t t z t

z t z t z t

  

   

  

  





  

   

 

       

         

*
3 4

1 2
2

2
1

1 0 12 2
=1

1 }
2

[

m m m

m N
H

k
k k

k

g t B t P t e e

R z t t t e h t t e

   

 

 

  

  

 

  

   





 

     

     

32
21 1 3

*
,

2
] , .mm

m N
H

h t t e z t e

P t e Q t








 

  

 
 

The embedding operation acts only on resonant 
exponentials, leaving the coefficients 
unchanged at these exponents. Given that the 
expression  

         
2

1
1 0 12 2

=1
[ k

k k

k

R z t t t e h t t e
 

    

          
*

,32
21 1 3

2
]mm

m N
H

h t t e z t e P t e
 


 

     

linearly depends on  1 t  and  2 t  (see the 
formula 1(6 ),  we conclude that, after the 
embedding operation, the function  ˆ ,G t   will 
linearly depend on scalar functions  1 t  and 

 2 .t  Taking into account that under 
conditions (20), scalar multiplication by vector 
functions   ,k

k t e


  containing only 

exponentials ,ke
  =1,2,k  it is necessary to keep 

in the expression  ,G t   only terms with 

exponents 1e
  and 2 .e

  Then condition (20) 
takes the form  

       
2

1
12 2

=1
< k

k k

k

t t e h t t e
t

 
  

 
  
 
  

    2
21 1h t t e


   

    
1

1
1 1

1 1=2: 1

, ,
N

m

m m

w t t t e


 


 
  
  
 

  

    
2

2
1 1

2 2=2: 2

, ,
N

m

m m

w t t t e


 


 
  
  
 

  

     

 

1 2
1 2

0

, > 0,

, , =1,2,

k
kQ t e Q t e t e

t t T k

 
  

 
 

where the functions     1 2, , , =1,2,
j

mw t t t j 

depend on  1 t  and  2 t  in a linear way (see 
in  ** the underlined terms in and the formula 

1(6 ) ). Performing scalar multiplication here, we 
obtain linear ordinary differential equations 
with respect to the functions  , =1,2,k t k  
involved in the solution (18) of system (11). 
Attaching the initial conditions 

    0 * 0= , , =1,2,k kt z t k  calculated earlier to 
them, we find uniquely functions  ,k t and, 
therefore, construct a solution (17) of the 
problem (19) in the space U  in a unique way. 
The theorem is proved. 

As mentioned above, the right-hand 
sides of iterative problems (10 )k  (with their 
consistent solution) may not belong to the space 

.U  Then, according to [4] (p. 234), the right-
hand sides of these problems must be embedded 
into ,U  according to the above rule. As a result, 
we obtain the following problems:  

   

   

3
0

0 0 0 0
=1

0
0 0

, ( ) =

, ,0 = ;

j

j j

z
Lz t t A t z R z

h t z t z

 



  







     
0(10 )  

     

 

1 2
1 1 2 0

0
1 0 1 0

( ), =
2

, ,0 = 0;

g t
Lz t e e B t z

z
R z z t

t

 
  



 
  

 


 

     

1(10 )  

     

 

1 2
2 1 2 1

1
1 1 2 0 0 0

( ), =
2

, ,0 = 0;

g t
Lz t e e B t z

z
R z R z z t

t

 
  



 
  

 


  

     

2(10 )  

 

     

 

1 2
1 2 1

1
0 1 1 0

( ), =
2

... , ,0 = 0, 1,

k k

k
k k k

g t
Lz t e e B t z

z
R z R z z t k

t

 
  








 
  

 


    

   

(10 )k  

(images of linear operators 
t




 and R  do not 

need to be embedded in space ,U since these 
operators act from U  to U ). Such a 
replacement will not affect the construction of 
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an asymptotic solution to the original problem 
(1) (or its equivalent problem (2)), so on the 

narrowing  =
t




 the series of problems 

(10 )k

 
will coincide with the series of problems 

(10 )k  (see [4], pp. 234–235]. 
Applying Theorems 1 and 2 to iterative 

problems (10 ),k  we find their solutions uniquely 
in space U and construct series (7). As in [4], 
we prove the following statement. 

Theorem 3. Let conditions 1) -2) be 

satisfied for system (2). Then, for 
0 0(0, ]( > 0    is sufficiently small) system (2) 

has a unique solution 1 2( , ) ([0, ], );z t C T  C  at 
the same time there is an estimate  

1
[0, ]|| ( , ) ( ) || , = 0,1,2,...,N

N C T Nz t z t c n     

where ( )Nz t
 is the restriction on 

( )= t



 of 

the N  -th partial sum of the series (7) (with 

coefficients  , ,kz t U 
 
satisfying the iterative 

problems (10 )k ) and the constant > 0Nc  does 

not depend on   at 0(0, ]  . 
 
5. Construction of a solution to the 

first iterative problem  
 

Using Theorem 1, we try to find a solution to 
the first iterative problem 0(10 ).  Since the right-
hand side  h t  of the system 0(10 )  satisfies 
condition (12), this system (according to (17)) 
has a solution in the space U  in the form  

           
2

0 0
0 0

=1
, = ,k

k k

k

z t z t t t e


  
   

(21)  

where       0 1
0 , ,k t C t T  C are arbitrary 

functions,        0 1
0=1,2, = .k z t A t h t  

Subordinating (21) to the initial condition 
  0

0 0 ,0 = ,z t z we have  
         

2
0 0 0

0 0 0 0
=1

=k k

k

z t t t z  
 

         
2

0 0 1
0 0 0 0

=1
= .k k

k

t t z A t h t   
  

(22)  

Multiplying this equality scalarly  0j t  and 
taking into account the biorthogonality of the 
systems   k t and   ,j t  we find the values  

          0 0 1
0 0 0 0

1= , , =1,2.
2k kt z A t h t t k 

 
For a complete calculation of the functions 

   0
k t , we proceed to the next iterative 

problem 1(10 ).  Substituting the solution (21) of 
the system 0(10 )  into it, we arrive at the 
following system:  

           
2

0 0
1 0

=1
, = ( ) k

k k

k

d d
Lz t z t t t e

dt dt


    

     

 

     

 

0 0
0 0 0 03

3 3 0

, ,K t t z t K t t z t
e

t t



 
  

 

   1 2
1 2

( )
2

g t
e e B t
 
 


  


 

         
2

0 0
0

=1

k
k k

k

z t t t e


 



 
   
 

  

        
 

0
2

=1

, j j
j

j j

K t t t t
e

t

 




 





      (23) 
        

 

0
0 0 0

0

,
,

j j

j

K t t t t

t

 








 

here we used the expression 1(6 )  for  1 ,R z t 

and took into account that when    0, = ,z t z t   

in the sum  16 only terms with 1 ,e
  2e

  and 5e


remain). We calculate  

   1 2
1 2

( )=
2

g t
M e e B t

 
 


 


 

         
^2

0 0
0

=1

k
k k

k

z t t t e


 
 

   
 


 

         
21 1

1 0 1 1 1
1= [ e
2

g t B t e z t t t
 
    

 

     1 2 2
1 2 2 2 0e et t z t

  
   


  

 

       
21 2 2

2 1 1 2 2 2+e e ] =t t t t
  

     
 

 

         
21 1

1 0 1 1 1
1= [ e
2

g t B t e z t t t
 
    

 

     2
1 2 2 2 0et t z t


     

        
2 2

2 1 1 2 2 2e ].t t t t
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Since 1 2e =1,   then system (23) after 
embedding takes the form 

           
2

0 0
1 0

=1
, = ( ) k

k k

k

d d
Lz t z t t t e

dt dt


    

     

 

     

 

0 0
0 0 0 03

3 3 0

, ,K t t z t K t t z t
e

t t



 
  

          
21 1

1 0 1 1 1
1 [
2

g t B t e z t e t t
 
     

      2
1 2 2 2 0t t e z t


     

 
       

2 2
2 1 1 2 2 2 ]t t e t t


       

        
 

0
2

=1

, j j
j

j j

K t t t t
e

t

 




 





 
        

 

0
0 0 0

0

,
,

j j

j

K t t t t

t

 






  

This system is solvable in the space U  if and 
only if the conditions of orthogonality are 
satisfied: 

           
2

0 1
1 0

=1

1( ) [
2

k
k k

k

d
t t e g t B t e z t

dt

 
    

 

       
2 1

1 1 1 1 2 2e t t t t

       

 

         
22 2

2 0 2 1 1 2 2 2 ]e z t t t e t t
 
           

        
 

 

0
2

=1

,
, 0, =1,2.

i i
ji

j

i i

K t t t t
e t e j

t


 




    

Performing scalar multiplication here, we 
obtain an inhomogeneous system of 
decomposing differential equations:  

   
        

0
01

1 1 1,
d t

t t t
dt


      

    
 

   
1 0

1
1

, ,K t t t
t

t





   

        1 0 1
1 , 0,
2

g t B t z t t    
   

        
0

02
2 2 2,

d t
t t t

dt


          (24) 

   
        

0
02

2 2 2,
d t

t t t
dt


    

 

        2 0 2
1 , 0.
2

g t B t z t t  

 

Adding the initial conditions (22) to this 
system, we find uniquely functions    0 ,k t

=1,2,k  and, therefore, uniquely calculate the 

solution (21) of the problem 0(10 )  in the space 
.U  Moreover, the main term of the asymptotic 

behavior of the solution to problem (2) has the 
form  

           
 

1
2

0 0 0
0 0

=1
= ,

t

d
k

t

k k

k

z t z t t t e

  


  


  (25) 

where the functions    0
0k t satisfy problem 

(22), (24),        0 1
0 = .z t A t h t   
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