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1  Introduction 
One of the most important aspects of mathematics is 
differential and integral equations. These provide 
tools to solve problems in our world. Thus, this 
paper explains the applicability of the MAHA 
transform in solving ordinary differential equations 
(ODEs) and validation of the solutions by using a 
programming language.  

The MAHA transform was introduced to 
address common and intermediate differential 
equations in the time domain. Transformations such 
as [1], [2], [3], [4], [5], serve as valuable numerical 
tools for solving differential equations. Similarly, 
the MAHA transform and its essential properties are 
applied to tackle differential equations. Algorithms 
are needed to implements these transforms and their 
applications, [6]. Thus, we aim to show how MAHA 
transform solves ODEs and validate the solution 
using programming language such MATLAB. 

The MAHA transform for capacities in the set A 
is characterized as in formula (1). 
A = {f (t): there exist m, l1, l2 > 0.  

         |f (t)| < meli|t|, if t∈(−1)ix [0,∞)}    
(1) 

 
where m is constant limited number, and l1, l2 might 
be limited or boundless. MAHA fundamental 
change is signified by the administrator M(.), which 
is characterized by the vital condition as in formula 
(2). 

 

𝐹(𝑢, 𝑣) = 𝑀[𝑓(𝑡)] = (𝑢𝑣)𝛽 ∫ 𝑓 (
𝑡

𝑢
) 𝑒−

𝑡

𝑢
 

∞

0

𝑑𝑡 

              𝑢, 𝑣 > 0, 𝛽 ∈ 𝑍, 𝑡 ≥ 0        
(2) 
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The parameters u and v in this essential 
transform are employed to compute the variable t, 
the argument of the function f. This indispensable 
transform exhibits additional connections with [7], 
[8]. 

The purpose of this study is to demonstrate the 
significance of this intriguing novel transform and 
its efficiency in solving linear differential equations, 
[9], [10], [11]. 

The MAHA transform is used in this work to 
solve ODEs, as well as several practical applications 
which are considered basic in mathematical physical 
fields. The main contributions of this paper are: a 
review of MAHA transformation and its properties 
to tackle differential equations, design numerical 
algorithm to solve the differential equations, and 
validate the exact solution by MAHA 
transformation and the numerical analysis solution. 
The programming codes are written in MATLAB. 
In the methodology section, the steps of MAHA 
transformation and algorithms of exact and 
analytical solutions with their implementation are 
presented.  The exact and the numerical analysis 
solution are validated on some sample of ordinary 
differential equations. 

 Exact solution of nuclear physic and medical 
applications are presented. The exact and numerical 
solutions are validated.  

In section 2, a related work is presented. In 
section 3, the methodology presents the steps of 
MAHA transformation for exact solution and 
analysis methods for the selected equations. Section 
4 presents results of solving sample of equations and 
applications by deploying MATLAB. Section 5 
concludes the manuscript.  

 
 

2  Related Works 
Through studying and researching integral 
transformations and their applications in life, we 
found that there are many integral transformations 
with two parameters. The most important of these, 
according are ZZ transformations, [12].  

The value of 𝛽, in formula (2), belongs to the set 
of integers,  gives transformation the generality and 
the preference by using it in important applications. 
Note that when 𝛽 = 0, the MAHA transform 
becomes Shehu transform. When 𝛽 = -1, the MAHA 
transform becomes KKAT transform and Quideen 
transform. The Maha integral transformation is 
more general transformation than the previous 
transformations with two parameters. Through this 
𝛽, we can choose the appropriate number for the 
application of physics, engineering, or a life 

application to convert the ordinary differential 
equation into an easy and simple algebraic equation. 
Then, by taking the inverse of this transform, we 
can obtain the exact solution. 

The value of 𝛽 can be referred to as, for 
example, the number of samples taken in the 
application. There are many mathematical models in 
the linear modeling that depend on this 𝛽, for 
example, drug concentration problems, chemical 
problems, and others.  

Through our study and our knowledge of many 
integral transforms with one parameter or two 
parameters or more, there is no preference between 
one transform and another, but there is an important 
matter, which is that each transform has a use for 
some applications through after converting 
differential equations, integral equation or systems 
into algebraic equations or algebraic system. 
Conversion is made easier by simplifying that 
application, [13], [14], [15], [16]. Also, algorithms 
are essential to compute values in such systems.  

MATLAB programming language can be 
utilized to solve ordinary differential equations 
analytically and numerically. It offers various 
numerical methods to solve linear ordinary 
differential equations (ODEs). The primary function 
for this purpose is ode45, but there are other 
functions which support in solving different types of 
ODEs and specific requirements. The ode45 being 
the most commonly used for non-stiff problems.  
The ode45 uses the Dormand-Prince method, a 
variable-step, variable-order (Runge-Kutta) method. 
To numerically solve a 2nd ode, for example, you 
first convert it to a system of first-order ODE. 

The general steps to solve ODEs numerically in 
MATLAB are: 
1. Define the ODE as a function. 
2. Define initial conditions and the range of the 

independent variable. 
3. Use an appropriate ODE solver function 

(ode45, etc.). 
4. Call the solver and plot the solution. 

 
These steps will be followed when the 

MATLAB code is deployed to solve odes in the 
methodology and applications sections.  

 
 

3  Methodology 
 
3.1 MAHA Integral Transform of Some 

Functions 
Assuming the existence of the fundamental data (2) 
for any function f(t), the sufficient data for the 
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presence of the MAHA integral transform are that, 
for t t greater than or equal to 0, f(t) should be 
piecewise continuous and of exceptional order. 
Otherwise, the MAHA transform may or may not 
exist. The MAHA integral transform has basic 
capacities: 

1) If f(t) = k, k is an arbitrary constant 
function, then via the definition we get: 

𝑀[𝑘] = (𝑢𝑣)𝛽 ∫ 𝑘𝑒−
𝑡

𝑢
 

∞

0

𝑑𝑡 = (𝑢𝑣)𝛽 𝑘
𝑒−

𝑡

𝑣

−1

𝑣

]0
∞

= 𝑘𝑢𝛽𝑣𝛽+1 
      2) If f(t) = t so: 

𝑀[𝑡] = (𝑢𝑣)𝛽 ∫
𝑡

𝑢
𝑒−

𝑡

𝑢
 

∞

0

𝑑𝑡 

 
So, by integration by parts, M[t]  =  𝑢𝛽−1𝑣𝛽+2 
 
Also: 
(i) M[𝑡2]  =  2𝑢𝛽−2𝑣𝛽+3 
(ii) M[𝑡3]  =  6𝑢𝛽−3𝑣𝛽+4 
(iii) In general, if n positive integer number, then 
M[𝑡𝑛]  =  𝑢𝛽−𝑛𝑣𝛽+𝑛+1 𝑛!, and if n > -1, then 
M[𝑡𝑛] =  𝑢𝛽−𝑛𝑣𝛽+𝑛+1 𝜏(𝑛 + 1), where 𝜏(. ) is  
 
Gamma function. 

3) If f(t) = 𝑒−𝑎𝑡 , where a is an arbitrary 
constant number, so: 

𝑀[𝑒−𝑎𝑡] = (𝑢𝑣)𝛽 ∫ 𝑒−
𝑎𝑡

𝑢
 𝑒−

𝑡

𝑢
 

∞

0

𝑑𝑡  

= (𝑢𝑣)𝛽 𝑒
−(

𝑎 
𝑢

+
1
𝑣

)𝑡
 

−(
𝑎 

𝑢
+

1

𝑣
)

]0
∞ =

(𝑢𝑣)𝛽+1

𝑣+𝑎𝑢
, 

also 

𝑀[𝑒𝑎𝑡] =  
(𝑢𝑣)𝛽+1

𝑢 − 𝑎𝑣
 

4) If f(t) = sin(at), where a is an arbitrary 
constant number, so: 

𝑀[sin (𝑎𝑡)] = (𝑢𝑣)𝛽 ∫ sin (a
𝑡

𝑢
)𝑒−

𝑡

𝑣
 

∞

0

𝑑𝑡  

=
𝑎𝑢𝛽+1𝑣𝛽+2

𝑢2 + 𝑎2𝑣2
 

 
5) If f(t) = cos(at), a is an arbitrary constant 

number, so: 
 

𝑀[sin (𝑎𝑡)] = (𝑢𝑣)𝛽 ∫ cos (a
𝑡

𝑢
)𝑒−

𝑡

𝑣
 

∞

0

𝑑𝑡  

 
After simple computations, we get: 

 

𝑀[cos (𝑎𝑡)] =
𝑢𝛽+2𝑣𝛽+1

𝑢2 + 𝑎2𝑣2
 

 
6) If f(t) = sinh(at), a is an arbitrary constant 

number, so: 
 

𝑀[sinh (𝑎𝑡)]

= (𝑢𝑣)𝛽 ∫ sinh (a
𝑡

𝑢
)𝑒−

𝑡

𝑣
 

∞

0

𝑑𝑡  

= (𝑢𝑣)𝛽 ∫
(𝑒

𝑎𝑡

𝑢
 − 𝑒

−𝑎𝑡

𝑢
 )

2

∞

0

 𝑒
−𝑡

𝑣
 𝑑𝑡 

 
After simple computations, we get: 

𝑀[sinh (𝑎𝑡)] = (𝑢𝑣)𝛽+1 (
𝑎𝑣

𝑢2−𝑎2𝑣2
) 

7) If f(t) = cosh(at), a is an arbitrary constant 
number, so: 
 

𝑀[cosh (𝑎𝑡)] =
𝑢𝛽+2𝑣𝛽+1

𝑢2−𝑎2𝑣2
 

 
8) Shifting property of MAHA integral 

transform 
 
If MAHA integral transform of f(t) is F(u,v), 
then MAHA transform of function 𝑒𝑎𝑡𝑓(𝑡) is 

given by 𝑢𝑣𝛽

[𝑢(
𝑢𝑣

𝑢−𝑎𝑣
)]𝛽

 𝐹(𝑢,
𝑢𝑣

𝑢−𝑎𝑣
). 

Proof 

𝑀[𝑓(𝑡)𝑒𝑎𝑡] = (𝑢𝑣)𝛽 ∫ 𝑓 (
𝑡

𝑢
) 𝑒𝑎

𝑡

𝑢
 

∞

0

𝑒−
𝑡

𝑣
 𝑑𝑡 

= (𝑢𝑣)𝛽 ∫ 𝑓 (
𝑡

𝑢
) 𝑒−𝑡[

1

𝑣
−

𝑎

𝑢
 ]

∞

0

𝑑𝑡 

= (𝑢𝑣)𝛽 ∫ 𝑓 (
𝑡

𝑢
) 𝑒−𝑡[

𝑢−𝑎𝑣

𝑢𝑣
 ]

∞

0

𝑑𝑡 

                  = (𝑢𝑣)𝛽 
𝑢(

𝑢𝑣

𝑢−𝑎𝑣
)𝛽

𝑢(
𝑢𝑣

𝑢−𝑎𝑣
)𝛽 ∫ 𝑓 (

𝑡

𝑢
) 𝑒−𝑡[

𝑢−𝑎𝑣

𝑢𝑣
 ]∞

0
dt 

=
(𝑢𝑣)𝛽 

𝑢(
𝑢𝑣

𝑢−𝑎𝑣
)𝛽

 𝐹(𝑢,
𝑢𝑣

𝑢 − 𝑎𝑣
) 

Theorem (3.1) 

(i) 𝑀[𝑓′(𝑡)] = (𝑢𝑣)𝛽 [−𝑢𝑓(0)]+ 
𝑢

𝑣
 F(u,v) 

(ii) 𝑀[𝑓′′(𝑡)] = (𝑢𝑣)𝛽 [−𝑢𝑓′(0) −
𝑢2

𝑣
 𝑓(0)] 

                          + 
𝑢2

𝑣2 F(u,v) 

(iii) 𝑀[𝑓′′′(𝑡)] = (𝑢𝑣)𝛽 [−𝑢𝑓′′(0) −
𝑢2

𝑣
 𝑓′(0) 

                          − 𝑢3

𝑣2  𝑓(0)]+ 
𝑢3

𝑣3 F(u,v) 

(iv) 𝑀[𝑓(4)(𝑡)] = (𝑢𝑣)𝛽 [−𝑢𝑓′′′(0) −
𝑢2

𝑣
 𝑓′′(0) 

                          − 𝑢3

𝑣2  𝑓′(0) −
𝑢4

𝑣3  𝑓(0)]+ 
𝑢4

𝑣4 F(u,v) 
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(iiv) 𝑀[𝑓(𝑚)(𝑡)] = (𝑢𝑣)𝛽 [−𝑢𝑓(𝑚−1)(0) 

                            − 𝑢2

𝑣
 𝑓(𝑚−2)(0) −

𝑢3

𝑣2  𝑓(𝑚−3)(0) 

                            − ⋯  −
𝑢𝑚

𝑣𝑚−1  𝑓(0)]+ 
𝑢𝑚

𝑣𝑚 F(u,v) 
Proof 

(i) By the definition, we get: 
 

𝑀[f′(t)] = (𝑢𝑣)𝛽 ∫ f′ (
𝑡

𝑢
)𝑒− 

𝑡

𝑣
 

∞

0

𝑑𝑡  

 
Integration by parts method, we have: 

𝑀[f′(t)] = (𝑢𝑣)𝛽 [−𝑢𝑓(0)] +
𝑢

𝑣
𝐹(𝑢, 𝑣) 

 
(ii) Also, by the definition, we get: 

 

𝑀[f′′(t)] = (𝑢𝑣)𝛽 ∫ f′′ (
𝑡

𝑢
)𝑒− 

𝑡

𝑣
 

∞

0

𝑑𝑡  

 
Also, Integration by parts method, we obtain: 

𝑀[f′′(t)] = (𝑢𝑣)𝛽 [−𝑢𝑓′(0) −  
𝑢2

𝑣
𝑓(0)]

+
𝑢2

𝑣2
𝐹(𝑢, 𝑣) 

The proof of (iii) and (iv) is similar to (ii). 
(iiv) We can confirm by Mathematical 
Induction. 
 
3.1.1 The Inverse of MAHA Integral 

Transform 
In this part, we present the inverse of MAHA 
transform technique of basic functions: 
(1) 𝑀−1[𝑘𝑢𝛽𝑣𝛽+1] = 𝑘 
(2) 𝑀−1[𝑢𝛽−𝑛𝑣𝛽+𝑛+1] =

𝑡𝑛

𝑛!
 , where n > 0 integer 

number. 
(3) 𝑀−1 [

(𝑢𝑣)𝛽+1

𝑣+𝑎𝑢
] = 𝑒−𝑎𝑡 , where a is a constant 

number. 
(4) 𝑀−1 [

(𝑢𝑣)𝛽+1

𝑢−𝑎𝑣
] = 𝑒𝑎𝑡 

(5) 𝑀−1 [
𝑎𝑢𝛽+1𝑣𝛽+2

𝑢2+𝑎2𝑣2 ] = sin (𝑎𝑡) 

(6) 𝑀−1 [
𝑢𝛽+2𝑣𝛽+1

𝑢2+𝑎2𝑣2 ] = cos (𝑎𝑡) 

(7) 𝑀−1 [
𝑎𝑢𝛽+1𝑣𝛽+2

𝑢2−𝑎2𝑣2 ] = sinh (𝑎𝑡) 

(8) 𝑀−1 [
𝑢𝛽+2𝑣𝛽+1

𝑢2−𝑎2𝑣2 ] = cosh (𝑎𝑡) 
 

3.2 Application of MAHA Integral 

Transform of Ordinary Differential 

Equations (ODEs) 
The MAHA necessary transform can be utilized as 
a successful device to solve ordinary differential 

equations. The steps of an exact solution of 
differential equation using MAHA transform are: 

1) Apply MAHA transform on the given 
equation utilizing the initial conditions. 

2) Take inverse transform, you will get the 
exact solution. 

3) Write a programming code to find values of 
the dependent variables based on the values 
of independent variable. 

 
The steps of a numerical analysis solution of a 
differential equation are: 

1. Define the differential equation as a system 
of first-order ODE. 

2. Fill in the initial conditions. 
3. Set the range values of the independent 

variable as needed. 
4. Solve the differential equation (you can use 

a built in function of a programming 
language). 

5. Extract and plot the solution. 
Example 1: 1st order linear ODE 
Consider the differential equation: 

dy

dx
+ y = 0, y(0) = 1         (3) 

Exact Solution:  
1 )  Take MAHA integral transform to this 
condition, you get: 

M[
dy

dx
] +  M[y] =  0 

 (𝑢𝑣)𝛽(−𝑢𝑦(0)) +
u

v
𝐹(𝑢, 𝑣) + 𝐹(𝑢, 𝑣) = 0 

𝐹(𝑢, 𝑣) [
u

v
+ 1] = 𝑢(𝑢𝑣)𝛽 

So 

𝐹(𝑢, 𝑣) =
(𝑢𝑣)𝛽+1

u + v
 

2) Take inverse to both sides, you get: 
The exact solution: 

𝑦(𝑥) = 𝑒−𝑥 
 
The MATLAB code Solution: 

3)  
% Define the range of x 
x = linspace(0, 5);% as needed 
% Compute y(x) 
y = exp(-x); 
% Plot the function 
figure; plot(x, y, 'LineWidth', 2); 
xlabel('x');ylabel('y'); title('y(x) = e^{-
x}');grid on; 
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Fig. 1: On the interval [0, 5], plot exact solution of  
dy

dx
+ y = 0, y(0) = 1 

 
Numerical Analysis Solution using the built-in 

function ode45: 

% Define the differential equation function: y’ =  -
y 
ode = @(x, y) -y; 
% Define the initial condition 
y0 = 1; 
% Define the range of x values over which to solve 
the equation 
xspan = [0 5]; %adjust as needed 
% Solve the differential equation 
[x, y] = ode45(ode, xspan, y0); 
% Plot the solution 
plot(x, y, '-o'); xlabel('x'); 
ylabel('y(x)');  
title('Solution of dy/dx + y = 0');grid on; 
 

 
Fig. 2: Numerical solution of dy/dx +y =0, y(0) 
=1 on the interval [0, 5] 

 
Figure 1 and Figure 2 show the plot of the 

exact and numerical solutions, respectively. 

These visually validate the solutions by the two 
methods. 

 
Example 2: 2nd DE 

Find the solution of the second-order differential 
equation y′′+y=0, with initial conditions y(0)=1 and 
y′(0)=1: 

𝑦 ′′ + 𝑦 = 0, 𝑦(0) = 1, 𝑦 ′(0) = 1       (4) 
 

Exact Solution: 
1 )  Take MAHA transform to this differential 
condition, you will get: 

(𝑢𝑣)𝛽(−𝑢) −
𝑢2

𝑣
(𝑢𝑣)𝛽 +

𝑢2

𝑣2
𝐹(𝑢, 𝑣) + 𝐹(𝑢, 𝑣)

= 0 

𝐹(𝑢, 𝑣) [1 +
𝑢2

𝑣2
] = 𝑢(𝑢𝑣)𝛽 +

𝑢2

𝑣
(𝑢𝑣)𝛽 

So 

𝐹(𝑢, 𝑣) =
𝑢𝛽+1𝑣𝛽+2

𝑢2+𝑣2  + 𝑢
𝛽+2𝑣𝛽+1

𝑢2+𝑣2  
2) Take the inverse MAHA transform of this 
equation to get the exact solution: 

𝑦(𝑥) = sin 𝑥 + cos 𝑥 
 

The MATLAB code Solution: 

3) Use MATLAB code, and compute:  
 y = sin(x)+ cos(x); 
This is validated by the following analytical 
algorithm (Figure 3). 
 

Numerical Analysis Solution Using the built-in 

function ode45: 

In this case, the equation y′′+y=0 is rewritten as a 
system of first-order ODEs: y1′=y2, y2′=−y1.Here, 
y1=y, and y2=y′. Therefore, ode is defined as a 
function that takes x (the independent variable) and 
y (a dependent variable as a vector containing y and 
y′) and returns the derivatives [y'(x); y''(x)]. The 
built-in function ode45 is used. 
% Rewrite the differential equation y'' + y = 0 as a 
system of first-order ODEs: 
% y1 =y and y2 =y' % y1' =y2 and y2' = -y1 
% Define the system of ODEs 
dydt = @(t, y) [y(2); -y(1)]; 
y0 = [1; 1];  % y(0) = 1, y'(0) = 1 
% Define the time span for the solution 
tspan = [0 10]; % adjust as needed 
% Solve the system of ODEs using ode45 
[t, y] = ode45(dydt, tspan, y0); 
% Plot the solution 
figure;plot(t, y(:,1), '-o'); 
xlabel('Time t');ylabel('Solution y'); 
title('Solution of the differential equation y'''' + y = 
0'); 
grid on; 
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Fig. 3: Virtual Validation of exact and numerical 
solution of  
𝑦′′ + 𝑦 = 0, 𝑦(0) = 𝑦′(0) = 1 
   
Example 3: 2nd request ODE 

Consider the 2nd request differential equation: 
𝑦 ′′ − 3𝑦 ′ + 2𝑦 = 0, 𝑦(0) = 1, 𝑦 ′(0) = 4    (5) 

 

Exact Solution: 

1) Take MAHA transform to above 
differential equation, we get: 

(𝑢𝑣)𝛽(−𝑢) −
𝑢2

𝑣
(𝑢𝑣)𝛽 +

𝑢2

𝑣2
𝐹(𝑢, 𝑣)

− 3[(𝑢𝑣)𝛽(−𝑢) +
𝑢

𝑣
𝐹(𝑢, 𝑣)]

+ 2𝐹(𝑢, 𝑣) = 0 
So 

𝐹(𝑢, 𝑣) =
(𝑢𝑣)𝛽(𝑢 +

𝑢2

𝑣
)

(
𝑢

𝑣
− 2)(

𝑢

𝑣
− 1)

 

Now 
𝑢 +

𝑢2

𝑣

(
𝑢

𝑣
− 2) (

𝑢

𝑣
− 1)

=
𝐴

(
𝑢

𝑣
− 2)

=
𝐵

(
𝑢

𝑣
− 1)

 

 
After simple computations, we get: A=3, B=-2. 
2)Apply inverse 

𝐹(𝑢, 𝑣) =
3(𝑢𝑣)𝛽+1

𝑢 − 2𝑣
−

2(𝑢𝑣)𝛽+1

𝑢 − 𝑣
 

to get general exact solution as: 
𝑦(𝑥) = 3𝑒2𝑥 − 2𝑒𝑥 

 
3) Use MATLAB and compute:  
 y = 3*exp(2*x)- 2*exp(x); 
 

This is validated by the following analytical 
algorithm (Figure 4). 
Numerical Analysis Solution Using the built-in 

function ode45: 

To solve y′′−3y′+2y=0, with initial conditions 
y(0)=1 and y′(0)=4, for example, in MATLAB, you 

can use the ode45 function as follows. Let y1′=y2, 
y2′=3y2−2y1; where y1′ =y and y2=y′. Therefore, 
ode is defined as a function that takes x and y (a 
vector containing y and y′) and returns the 
derivatives [y'(x); y''(x)]. 
% Define the differential equation as a system of 
first-order ODEs.  
   ode = @(x, y)[y(2);3*y(2)- 2*y(1)]; 
% Initial conditions  
    y0 = [1; 4];  % [y(0); y'(0)] 
    xspan = [0 10];  % Adjust as needed 
 % Solve the differential equation 
    [x, sol] = ode45(ode, xspan, y0); 
    y = sol(:, 1);  % y(x) 
   yp = sol(:, 2); % y'(x) 
%Plot the solutions 
figure; subplot(2, 1, 1); 
plot(x, y, '-o'); xlabel('x'); 
ylabel('y(x)'); 
title('Solution of y'''' - 3y'' + 2y = 0'); grid on; 
subplot(2, 1, 2);plot(x, yp, '-o'); 
xlabel('x');ylabel('y''(x)'); 
title('Derivative of y(x)');grid on; 
 

 

Fig. 4: Virtual validation of exact 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  𝑦(𝑥) =
3𝑒2𝑥 − 2𝑒𝑥 and analytical solution of  
𝑦′′ − 3𝑦′ + 2𝑦 = 0, 𝑦(0) = 1, 𝑦′(0) = 4 

 

Example 4: 2nd order linear nonhomogeneous 

Consider 2nd order linear nonhomogeneous request 
differential equation: 

𝑦 ′′ + 9𝑦 = cos 2𝑥, 𝑦(0) = 1, 𝑦 (
𝜋

5
) = −1  (6) 

 

Exact Solution: 

1) Since y’ (0) is unknown, let y’(0)=a. Take 
MAHA transform of this condition and utilizing 
beginning conditions, you will have: 

(𝑢𝑣)𝛽 [−𝑢𝑎 −
𝑢2

𝑣
] +

𝑢2

𝑣2
𝐹(𝑢, 𝑣) + 9𝐹(𝑢, 𝑣)

=
𝑢𝛽+2𝑣𝛽+1

𝑢2 + 9𝑣2
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𝐹(𝑢, 𝑣) [9 +
𝑢2

𝑣2
] =

𝑢𝛽+2𝑣𝛽+1

𝑢2 + 9𝑣2
+ (𝑎𝑢 +

𝑢2

𝑣
)(𝑢𝑣)𝛽 

 
So 

𝐹(𝑢, 𝑣) =
(𝑢𝑣)𝛽𝑢2𝑣−1 + (𝑢𝑣)𝛽𝑢2𝑣−1(4 +

𝑢2

𝑣2)

(4 +
𝑢2

𝑣2)(9 +
𝑢2

𝑣2)

+
3(𝑢𝑣)𝛽𝑎𝑢

3(9 +
𝑢2

𝑣2)
 

 
After simple computations, you will get:  

𝐴 = 0, 𝐵 =
4

5
, 𝐶 = 0, 𝐷 =

1

5
 

 
2)Take inverse of MAHA transform, then the 
exact solution is: 

𝑦(𝑥) =
𝑎

3
sin(3𝑥) +

1

5
cos(2𝑥) +

4

5
cos (3𝑥) 

 
To find a, note that  𝑦 (

𝜋

2
) = −1 

 
Then, we find a =12/5. 
 
Then, the exact solution is 
𝑦(𝑥) =

4

5
sin(3𝑥) +

1

5
cos(2𝑥) +

4

5
cos(3𝑥)  

3) Use MATLAB and compute:  
y=  0.8*sin(3*x)+0.2*cos(2*x)+0.8*cos(3*x)  
 
This is validated by the following analytical 
algorithm (Figure 5). 
 

Numerical Analysis Solution using the built-in 

function ode45: 

To solve the differential equation y′′+9y=cos(2x) 
with the boundary conditions y(0)=1 and y(π/5)=−1 
in MATLAB, you can use the bvp4c function which 
is designed for boundary value problems.  
syms y(x) 
Dy = diff(y); 
D2y = diff(y, 2); 
% Define the differential equation 
ode = D2y + 9*y == cos(2*x); 
cond1 = y(0) == 1; cond2 = y(pi/5) == -1; 
sol = dsolve(ode, [cond1, cond2]); 
x_vals = linspace(0, 2*pi, 1000); 
y_vals = double(subs(sol, x, x_vals)); 
figure; plot(x_vals, y_vals, '-o'); 
xlabel('x');  
ylabel('y'); 
title('Solution of the differential equation y'''' + 9y = 
cos(2x)');  
grid on; 

 

 
Fig. 5: A solution of  
𝑦 ′′ + 9𝑦 = cos 2𝑥, 𝑦(0) = 1, 𝑦 (

𝜋

5
) = −1 

 
Example 5: 2nd ode 

Consider the differential equation 

𝑦 ′′ − 3𝑦 ′ + 2𝑦 = 4𝑒3𝑥, 𝑦(0) = −3, 𝑦 ′(0) = 5     (7) 
 

Exact Solution: 

1 )  Take MAHA technique of this differential 
problem and appling the initial data: 

(𝑢𝑣)𝛽 [−5𝑢 +
3𝑢2

𝑣2
] +

𝑢2

𝑣2
𝐹(𝑢, 𝑣) − 3[(𝑢𝑣)𝛽 + 3𝑢]

− 3
𝑢

𝑣
𝐹(𝑢, 𝑣) + 2𝐹(𝑢, 𝑣)

=
4(4𝑣)𝛽+1

4 − 3𝑣
 

𝐹(𝑢, 𝑣) [
𝑢2

𝑣2
−

3𝑢

𝑣
+ 2]

= (𝑢𝑣)𝛽 (−5𝑢 +
3𝑢2

𝑣2 ) + 9(𝑢𝑣)𝛽𝑢

+
4(4𝑣)𝛽+1

4 − 3𝑣
 

𝐹(𝑢, 𝑣) =
(𝑢𝑣)𝛽[5𝑢2𝑣−1 − 38𝑢]

(
𝑢

𝑣
− 3)(

𝑢

𝑣
− 2)(

𝑢

𝑣
− 1)

 

 
So 
𝐹(𝑢, 𝑣) = (𝑢𝑣)𝛽𝑢[

𝐴

(
𝑢

𝑣
−3)

+ 𝐵

(
𝑢

𝑣
−2)

+
𝐶

(
𝑢

𝑣
−1)

] 

We get: A = 2, B = 4, C = −9 

𝐹(𝑢, 𝑣) =
2(𝑢𝑣)𝛽+1

u − 3v
+

4(𝑢𝑣)𝛽+1

u − 2v
−

9(𝑢𝑣)𝛽+1

u − v
 

 
 
2)Take inverse transform, we obtain: 

𝑦(𝑥) = 2𝑒3𝑥 + 4𝑒2𝑥 − 9𝑒𝑥 
3) Use MATLAB and compute:  
 y= 2*exp(3*x)+4*exp(2*x)-9*exp(x)  
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Plot the function on the interval [0, 1], for example 
(Figure 6). 
 

Numerical Analysis Solution using the built-in 

function ode45: 

To solve the 2nd ode y′′−3y′+2y=4e3x, with initial 
conditions y(0)=−3 and y′(0)=5, the non-
homogeneous term 4e3x needs to be handled 
separately from the homogeneous equation. In 
MATLAB, the analytical solution can be 
implemented using ode45 as follows. 
% Define the differential equation as a system of 1st 
ODEs 
  ode = @(x, y) [y(2); 3*y(2) - 2*y(1) + 
4*exp(3*x)]; 
% Initial conditions 
  y0 = [-3; 5];  % [y(0); y'(0)] 
% Define the range of x values  
  xspan = [0 1];   
% Solve the differential equation 
  [x, sol] = ode45(ode, xspan, y0); 
% Extract solutions 
  y = sol(:, 1);  % y(x) 
  yp = sol(:, 2); % y'(x) 
% Plot the solutions 
  figure; 
 subplot(2, 1, 1);plot(x, y, '-o'); 
 xlabel('x'); 
 ylabel('y(x)'); 
 title(' solution of y′′−3y′+2y=4e3x '); 
grid on; 
subplot(2, 1, 2); 
plot(x, yp, '-o');xlabel('x'); 
ylabel('y''(x)'); 
title(' y=2e^(3x)+4e^(2𝑥) − 9𝑒𝑥'); 
grid on; 

 
Fig. 6: Visualize validation of exact and numerical 
solutions, on the interval [0, 1], of  
𝑦 ′′ − 3𝑦 ′ + 2𝑦 = 4𝑒3𝑥, 𝑦(0) = −3, 𝑦′(0) = 5 
3.3  Applications 
 

3.3.1 Maha Integral Transform on ”Nuclear 

Physics” 

The following problem is based on nuclear 
physics fundamentals. Consider the 1st order linear 
ordinary differential equation: 

𝑑𝑁(𝑡)

𝑑𝑡
= −𝛼𝑁(𝑡)                       (8) 

 
The essential relationship describing 

radioactive decay is given in this equation, where 
N(t) during time t denotes the number of not 
decayed atoms left in a sample of radioactive 
isotope, and α is the decay constant. Apply the 
Maha integral transform M, to set: 

𝑀{𝑁 ′(𝑡)} + 𝛼𝑀{𝑁(𝑡)} = 0              (9) 
 
Therefore 

(𝑢𝑣)𝛽[−𝑢𝑁(0)] +
𝑢

𝑣
𝐹(𝑢, 𝑣) + 𝛼𝐹(𝑢, 𝑣) = 0 

(
𝑢

𝑣
+ 𝛼)𝐹(𝑢, 𝑣) = (𝑢𝑣)𝛽𝑢𝑁(0) 

𝐹(𝑢, 𝑣) (
𝑢

𝑣
+ 1) =   𝑢𝛽+1𝑣𝛽𝑁0 

𝐹(𝑢, 𝑣) =
𝑢𝛽+1𝑣𝛽𝑁0

𝑢

𝑣
+ 𝛼

 

So 

𝐹(𝑢, 𝑣) = 𝑁0
(𝑢𝑣)𝛽+1

𝑢+𝛼𝑣
               (10) 

 
Take the inverse to both sides, we get the exact 
solution: 

𝑁(𝑡) = 𝑁0𝑒−𝛼𝑡              (11) 
 
This is the proper type of radioactive decay. 
You can solve dN(t)/dt =−αN(t) analytically in 
MATLAB, where α (alpha) is a constant, using 
ode45 function as follows. The plot in Figure 7 
visualizes how the population N(t) evolves over 
time t. 
% Define the parameters 
alpha = 0.1;  % for example 
% Define the differential equation function 
ode = @(t, N) -alpha * N; 
N0 = 100;% Initial population size 
tspan = [0 10];% Adjust as needed 
% Solve the differential equation 
[t, N] = ode45(ode, tspan, N0); 
% Plot the solution 
plot(t, N, '-o'); 
xlabel('Time (t)'); 
ylabel('N(t)'); 
title(['Solution of dN(t)/dt = -\alpha N(t), \alpha = ', 
num2str(alpha)]); 
grid on; 
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Fig. 7: Plot of the numerical solution of  
𝑑𝑁(𝑡)

𝑑𝑡
= −𝛼𝑁(𝑡),  with initial value N(0) =100 

 
3.3.2  Blood Glucose Concentration 

During continuous intravenous glucose injection, 
the concentration of glucose in the blood is G(t) 
exceeding the baseline value at the start of the 
infusion. The function G(t) satisfies the initial 
value problem (I, V, P). 

𝐺′(𝑡) + 𝑘𝐺(𝑡) =
𝛼

𝛾
                (12) 

 
Where t ϵ (0, ∞) and G(0)=0. 
 

The variables k, α and γ in equation ( 1 2 )  
represent the constant velocity of elimination, the 
rate of infusion, and the volume, respectively, in 
which glucose is distributed.  The Maha integral 
transform technique can be utilized to solve the 
equation in (12). Then, the concentration of 
glucose presents in the blood stream at time t is 
G(t)=α/(γk)(1−e−kt).  

Upon bilateral application of the Maha 
integral transform on (12), the resulting 
expression is obtained as in equation (13). 

𝑀{𝐺′ (𝑡)} + 𝑘𝑀{𝐺(𝑡)} =
𝛼

𝛾
𝑀{1}       (13) 

 
Let M { G(t)} = F (u, v). By utilizing 

the initial value problem (I, V, P) and the 
integral transform outlined in section 3.1, the 
equation (13) can be rearranged with the aid of 
equation (12) as: 

(𝑢𝑣)𝛽[−𝑢𝐺(0)] +
𝑢

𝑣
𝐹(𝑢, 𝑣) + 𝑘𝐹(𝑢, 𝑣)

−
𝛼

𝛾
𝑢𝛽𝑣𝛽+1 = 0 

(
𝑢

𝑣
+ 𝑘) 𝐹(𝑢, 𝑣) =

𝛼

𝛾
𝑢𝛽𝑣𝛽+1 

 
So 

𝐹(𝑢, 𝑣) =
𝛼

𝛾

𝑢𝛽𝑣𝛽+2

𝑢+𝑘𝑣
                   (14) 

 
After simple computation and using inverse 

of Maha transform to this expression, we get        the 
concentration of glucose in the blood as in (15). 

𝐺(𝑡) =
𝛼

𝛾𝑘
(1 − 𝑒−𝑘𝑡)                (15) 

 
A MATLAB code can be utilized to produce a 

plot showing the exact solution of G(t) as a function 
of time t (Figure 8). The exact formula 
G(t)=α/(γk)(1−e−kt) is directly used to compute G(t), 
ensuring accuracy and validation of the solution. 
The parameters alpha, gamma, k, and the range of 
t values (tspan) can be adjusted as needed for a 
specific scenario. Note that the “%” in the 
programming code is for comments and not for 
execution statements.  
% Define the parameters 
  alpha = 1.0; gamma = 1.0;k = 0.1;      
% Define the function for G(t) 
  G_exact = @(t)(alpha/(gamma*k)) *(1-exp(-k*t));   
  tspan = [0 50]; % example time span 
 G0 = 0; % initial value of G  
  G = G_exact(t); 
% Plot the exact solution 
  plot(t,G,'-o'); xlabel('Time (t)'); 
  ylabel('G(t)');  
title('G(t)=\alpha/(\gamma k)(1-e^{-kt})'); 
 grid on; 
 

This code is self-contained and can be executed 
directly in MATLAB. Adjust the parameter values 
as needed to fit your specific problem. The 
following code solves the given differential equation 
analytically and plots the solution (Figure 8). 
% Define parameters 
alpha = 1;   
gamma = 1;  
k = 0.1;   
tspan = [0 50]; % example time span 
G0 = 0; % initial value of G 
% Define the differential equation as a function  
dGdt = @(t, G) (alpha / gamma) - k * G; 
% Solve the differential equation using ode45 
[t, G] = ode45(dGdt, tspan, G0); 
% Plot the solution 
figure;  
plot(t, G, 'LineWidth', 2); 
title('Solution of dG/dt = (\alpha / \gamma) - k \cdot 
G'); 
xlabel('Time (t)'); 
ylabel('G(t)'); 
grid on; 
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Fig. 8: Plotted solution of G(t) with alpha = 1.0; 
gamma = 1.0;k = 0.1 
 
3.3.3  Aorta Pressure 

The heart’s contraction facilitates the 
transportation of blood into the aorta. The 
initial value problem is concerned with the aortic 
pressure function P(t) as in equation (16). 

𝑃′(𝑡) +
𝑐

𝑘
𝑃(𝑡) = 𝑐𝐴𝑠𝑖𝑛𝑡(𝑤𝑡)       (16) 

 
where P(0) = p0, and c, k, A, w are constants. 
The Maha integral transform technique is 
utilized to derive the pressure in the aorta. With 
the bilateral application of the Maha integral 
transform to equation (16). The resulting 
expression is as in (17). 

𝑀{𝑃′(𝑡)} +
𝑐

𝑘
𝑀{𝑃(𝑡)} = 𝑐𝐴𝑀{𝑠𝑖𝑛𝑡(𝑤𝑡)}    (17)  

 
By applying the initial value problem and 
utilizing the transform outlined in section 3.1, the 
rearrangement of equation (17) can be expressed 
as: 

(𝑢𝑣)𝛽[−𝑢𝑃(0)] +
𝑢

𝑣
𝐹(𝑢, 𝑣) +

𝑐

𝑘
𝐹(𝑢, 𝑣)

= 𝑐𝐴[
𝑤𝑢𝛽+1𝑣𝛽+2

𝑢2 + 𝑤2𝑣2
] 

(
𝑢

𝑣
+

𝑐

𝑘
) 𝐹(𝑢, 𝑣) = 𝑐𝐴𝑤 [

𝑢𝛽+1𝑣𝛽+2

𝑢2 + 𝑤2𝑣2
] + 𝑃0

𝑢𝛽+1𝑣𝛽

𝑢

𝑣
+

𝑐

𝑘

 

𝐹(𝑢, 𝑣) =
𝑐𝐴𝑤𝑢𝛽+1𝑣𝛽+2

(
𝑢

𝑣
+

𝑐

𝑘
)(𝑢2+𝑤2𝑣2)

+ 𝑃0
𝑢𝛽+1𝑣𝛽

𝑢

𝑣
+

𝑐

𝑘

       (18) 

 
After preforming basic calculations and applying 
partition fractions along with the inverse of the 
Maha integral transform to the given expression, 
the resultant value obtained represents   the amount 
of pressure in the aorta as in function (19). 

𝑃(𝑡) = 𝑃0𝑒−
𝑐

𝑘
𝑡 +

𝑐𝐴𝑤𝑘2

𝑤2𝑘2+𝑐2 (
𝑐

𝑤𝑘
sin(𝑤𝑡) −

cos(𝑤𝑡) + 𝑒−
𝑐

𝑘
𝑡)               (19) 

 
Figure 9 shows visualization solution, by the 

following MATLAB code to analytically solve and 
plot the given function P(t). Figure 10 shows a 
numerical solution for the same ODE. 
% Define the parameters 
P0 = 0; % Initial value 
c = 1; k = 1; A = 1; w = 1; 
t = linspace(0, 100, 1000);  
% Define the function P(t) 
P = @(t) P0*exp(-c/k * t)+(c*A*w*k^2)/ 
(w^2*k^2+c^2)*((c/(w*k))*sin(w*t)- 
cos(w*t)+exp(-c/k*t)); 
% Evaluate the function 
P_vals =P(t); 
plot(t, P_vals, 'LineWidth', 2); 
title('Solution to P(t)'); 
xlabel('Time t');ylabel('P(t)'); 
grid on; 
 

 
Fig. 9: Plot of exact solution of P(t)’  
 
% Define the parameters 
c = 1;k = 1; A = 1;w = 1; 
% Define the differential equation 
ode = diff(P, t) + (c/k) * P == c * A * sin(w * t); 
% Define the initial condition 
cond = P(0) == 0; 
% Solve the differential equation 
sol = dsolve(ode, cond); 
% Convert the symbolic solution to a MATLAB 
function 
P_sol = matlabFunction(sol); 
t_vals = linspace(0, 100, 1000); 
P_vals = P_sol(t_vals); 
% Plot the solution 
figure; plot(t_vals, P_vals, '-o'); 
xlabel('Time t'); ylabel('P(t)'); 
title('Solution of P''(t) + c/k P(t) = cA sin(wt)');grid 
on; 
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Fig. 10: Plot of numerical solution of P(t) with P(0) 
=0, and c=k =A=w =1 
t = linspace(0, 100, 1000);  
 

The results show that the MATLAB codes for 
the solutions are matched and agreed with the 
theoretical approach. The programming codes 
present examples and will help users in writing 
computing solutions to problems similar to the 
presented ones. 
 
 
4  Conclusions 
MAHA integral transform with two parameters 
conversion of linear ordinary differential equations 
with constant coefficients and higher orders are 
extended. The correctness of the transform is 
proved in the methodology section. Steps to solve 
ODEs using MAHA integral transform are 
presented. The steps are applied to find the exact 
solutions of five different examples of ODEs and 
three different examples of applications. The steps 
to solve DOEs numerically and validate the exact 
solution are presented.  MATLAB codes are 
deployed to show exact (direct) solutions and 
analytical solutions for the selected eight ODEs. 
The exact solutions and the numerical ones for 
given functions are validated and plotted. The two 
methods are applied to find exact solutions and 
numerical ones of nuclear physics and two medical 
applications. It is found that the exact solution is 
simpler and easier than the previous two 
parameters, and it can be numerically validated. 
The presented programming code will be helpful 
for users interested in computing scientific 
numerical applications.  

As a future work, we intend to investigate the 
performance of Maha transform in enhancing the 
security of image encryption/ decryption. The 
image encryption process starts with representing 
the image as numerical data. Then, applying Maha 
transformation on these values through ODE 
results in an encrypted version of the image. For 
decryption, if the correct initial conditions and 

ODE system are given, then the original image can 
be retrieved by reversing the transformation.  

 
 

References: 

[1] A. Belafhal, R. EL Aitouni, T. Usman, 
Unification of Integral Transform and Their 
Applications, Partial Differential Equations 

in Applied Mathematics, vol. 10, 100695, 
2024. 
http://dx.doi.org/10.1016/j.padiff.2024.100695  

[2] C. Constanda, Solution techniques for 
elementary partial differential equations. 
Chap- man and Hall/CRC, 1st Edition, 
New York,  pp,  272,  2002. 

 https://doi.org/10.1201/9781420057515. 
[3] D. G. Duffy, Transform methods for solving 

partial differential equations. CRC press, 
2nd Edition, New York, pp 728, 2004. 
https://doi.org/10.1201/9781420035148. 

[4] T. M. Elzaki, The new integral transform 
Elzaki transform’, Glob.  J. Pure Appl. 

Math., vol. 7, no. 1, pp. 57-64, 2011. 
[5] M. Alsaoudi, G. Gharib, E. Kuffi, A. Guiatni. 

New Two Parameter Integral Transform 
“MAHA Transform” and its Applications in 
Real Life, WSEAS Transactions on 

Mathematics, vol. 23, pp. 536-543. 2024. 
 https://doi.org/10.37394/23206.2024.23.56. 
[6] J. A. Jasim, E.A. Kuffi and S. A. Mehdi, A 

Review on the Integral Transforms, Journal of 

University of Anbar for Pure Science, vol. 17, 
no. 2, pp. 273-310, 2023. DOI: 
10.37652/juaps.2023.141302.1090. 

[7] A. Kamal and H. Sedeeg, The New Integral 
Transform Kamal Transform, Adv. Theor. 

Appl. Math., vol. 11, no. 4, pp. 451-458, 
2016. 

[8] M. A. M. Mahgoub, The new integral 
transform ’Mahgoub Transform’, Adv. 

Theor. Appl. Math., vol. 11, no. 4, pp. 391-
398, 2016. 

[9] I. A. Mansour, E. Kuffi and S. A. Mehdi, 
Solving Partial Differential Equations Using 
Double Complex SEE Integral Transform, 
AIP Conference Proceedings, 2591, 050007, 
2023. https://doi.org/10.1063/5.0119609. 

[10] S. A. Mehdi, E. Kuffi, J. Adel and J. A. 
Jasim, Solving the partial differential 
equation  by using SEJI integral transform”, 
Journal of Interdisciplinary Mathematics, 
vol. 26, no. 6, pp. 1123-1132, 2023. 
https://doi.org/10.47974/JIM-1611. 

[11] E. Kuffi and A. Moazzam, Solution of 
population growth rate linear differential 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.100

Maha Alsaoudi, Ahmad Sharieh, 
Ahlam Guiatni, Gharib Gharib

E-ISSN: 2224-2880 980 Volume 23, 2024

http://dx.doi.org/10.1016/j.padiff.2024.100695
https://doi.org/10.1201/9781420057515
https://doi.org/10.1201/9781420035148
https://doi.org/10.37394/23206.2024.23.56
https://doi.org/10.1063/5.0119609
https://doi.org/10.47974/JIM-1611


models via two parametric SEE 
transformation, IHJPAS. vol. 36, no. 2, 
pp. 430-435. 2023. 
https://doi.org/10.30526/36.2.3251. 

[12] R. U. Rao, ZZ Transform Method for 
Natural Growth and Decay Problems, 
International Journal of Progressive 

Science and Technologies, vol. 5, no. 2, 
2017. 
http://dx.doi.org/10.52155/ijpsat.v5.2.159. 

[13] F. Mubarak, MZ. Iqbal, A. Moazzam, U. 
Amjed, MU. Naeem, Substitution Method 
Using The Laplace Transformation for Solvin 
Partial Differential Equation Involving More 
Than Two Independent Variables, Bulletin of 

Mathematics and Statistics Research, vol. 9, 
no. 3, pp. 104-116, 2021. 

      

https://doi.org/10.33329/bomsr.9.3.104. 
[14] R. Saadeh, A. Qazza, K. Amawi,  A New 

Approach Using Integral Transform to 
Solve Cancer Models, Fractal and 

Fractional, vol. 6, no. 9, pp. 490, 2022. 
http://dx.doi.org/10.3390/fractalfract6090490. 

[15] R.Saadeh, A. Qazza, A. Burqan, A New 
Integral Transform: ARA Transform and its 
Properties and Applications, Symmetry, vol. 
10, no. 6, pp. 925, 2020. 
http://dx.doi.org/10.3390/sym12060925. 

[16] D. Thakur, Utilizing the Upadhyaya 
Transform to Solve the Linear Second Kind 
Volterra Intergral Equation, The Review of 

Contemporay Scientific and Academic 

Studies, vol. 3, no. 4, pp. 6, 2023. 
http://dx.doi.org/10.55454/rcsas.3.04.2023.007 

 

 

 

 

 

 

 

 

 

Contribution of Individual Authors to the 

Creation of a Scientific Article (Ghostwriting 

Policy) 

Conceptualization, Alsaoudi and Sharieh; 
methodology, Sharieh; validation Alsaoudi and 
Guiatni; formal analysis, Alsaoudi; investigation, 
Alsaoudi; resources, Gharib; data curation, Sharieh; 
writing/original draft preparation, Guiatni; 
writing/review and editing, Guiatni; supervision, 
Gharib; project administration, Gharib; steps of the 
solutions and programming language code, Sharieh. 
 

Sources of Funding for Research Presented in a 

Scientific Article or Scientific Article Itself 

No funding was received for conducting this study. 
 

Conflict of Interest 

The authors have no conflicts of interest to declare. 
 

Creative Commons Attribution License 4.0 

(Attribution 4.0 International, CC BY 4.0) 

This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en
_US 
 

 
 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.100

Maha Alsaoudi, Ahmad Sharieh, 
Ahlam Guiatni, Gharib Gharib

E-ISSN: 2224-2880 981 Volume 23, 2024

https://doi.org/10.30526/36.2.3251
http://dx.doi.org/10.52155/ijpsat.v5.2.159
https://doi.org/10.33329/bomsr.9.3.104
http://dx.doi.org/10.3390/fractalfract6090490
http://dx.doi.org/10.3390/sym12060925
http://dx.doi.org/10.55454/rcsas.3.04.2023.007
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



