
 

On a System with Multiple Period Annuli 

 
ANITA KIRICHUKA1, FELIX SADYRBAEV1,2 

1Daugavpils University, 
13 Vienibas Street, Daugavpils, 

LATVIA 
 

2Institute of Mathematics and Computer Science, 
University of Latvia, 
Rainis boulevard 29, 

LATVIA 
 

Abstract: - We consider two-point boundary value problems for the Hamiltonian system of the form 𝑥′ =

𝑓(𝑥, 𝑦), 𝑦′ = 𝑔(𝑥, 𝑦), where 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are functions with parameters. We estimate the number of 
positive and oscillatory solutions for the boundary value problems. Our primary tool is the phase plane analysis 
combined with evaluations of time map functions. Multiple positive solutions are detected due to multiple 
period annuli. 
 
Key-Words: - ordinary differential equations, oscillation, period annuli, boundary conditions, multiple positive 

solutions, Hamiltonian systems. 
 
Received: October 24, 2024. Revised: February 9, 2025. Accepted: March 23, 2025. Published: May 5, 2025.  
 
  
1 Introduction 
The theory of boundary value problems (BVP) for 
ordinary differential equations (ODE) is 
well-developed in the literature. Many books, [1], 
[2], [3], [4], [5] mention, among other things, the 
boundary value problems. The Hamiltonian 
systems [6], [7] are one of the ODE classes more 
often considered. Energy-saving arguments are 
usually involved in treating them. The phase space 
consideration is also convenient due to the 
geometrical treatment of trajectories as level sets of 
Hamiltonians. From a practical point of view, 
detecting positive solutions is essential. Some links 
on the subject can be found in [6], [8] and the 
references therein. The existence of solutions is the 
main issue when considering the nonlinear BVP for 
ODE. This stage should precede the computational 
analysis. The study of multiple solutions to BVP is 
interesting for theoreticians and essential for 
practitioners’ processes. 

We want to address the problem of the 
existence of families of oscillatory solutions with 
the existence of solutions to boundary value 
problems. We restrict ourselves to the case when 
there are multiple period annuli (continua of 
periodic solutions) and positive solutions of a BVP 
are counted. 

 

2  Preliminaries 
Autonomous ordinary differential equations can 
have multiple oscillatory solutions of different 
types. The second-order scalar ODE also can 
exhibit such behavior. An example of this is the 
system 

𝑥′ = 𝑓(𝑥, 𝑦), 𝑦′ = 𝑔(𝑥, 𝑦),     (1) 
 
where 

𝑓(𝑥, 𝑦) =  −𝑦 (𝑦2 −  𝑘2), (2) 
𝑔(𝑥, 𝑦) =  𝑥(𝑥^2 + (1 − 𝜆)𝑥 − 𝜆), (3) 
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𝑘 and λ are parameters. The phase portrait is shown 
in Figure 1 for the values 𝑘 = 3 and 𝜆 = 3. 

Let us look at this picture. The system has 
multiple period annuli. Recall that a period annulus 
is a continuous family of trajectories surrounding 
one or several critical points. If there is only one 
critical point of the type center, we will call this 
family of trajectories the trivial period annulus. If 
more than one critical point is included, we call this 
the nontrivial period annulus. We see nine critical 
points, five centers, and four saddle points. A 
standard linearization around these points can 
verify this. We aim to study this relatively 
complicated behavior of solutions and draw some 
conclusions about systems with multiple periods of 
annuli of different types. 

First, we analyze the boundary value problems 
associated with systems of type (1), looking for 
positive solutions. 

In the next section, we formulate the boundary 
value problems (BVP) and evaluate the number of 
solutions. For this, we conduct numerical analysis 
in combination with some theoretical suggestions. 

In the third section, we use results and methods 
concerning the first zero function, similar to those 
in [6] and [8]. 

Finally, we discuss the systems with multiple 
annuli periods and make suggestions. 

 
  

3  The System 
Consider the system (1) with functions (2) and (3)  

{
𝑥′ = −𝑦 (𝑦2 −  𝑘2),

𝑦′ =  𝑥(𝑥2 + (1 − 𝜆)𝑥 − 𝜆),
 (4) 

𝑘  and λ are parameters. This is a system that 
corresponds to the Hamiltonian function: 

𝐻(𝑥, 𝑦) =
𝑥4

4
+

1 − 𝜆

3
𝑥3 −

𝜆

2
𝑥2 +

𝑦4

4
−

𝑘2

2
𝑦2. 

 
Hamiltonian systems are essential in the theory 

of dynamical systems and various fields. Due to 
their geometric properties, they are used to 
demonstrate the developed theories. Figure 1 
depicts the phase portrait for system (4). 

This system was investigated in the work [9], 
where the authors succeeded in perturbing it by 
cubic terms so that the perturbed system has thirteen 

limit cycles. We are interested in different 
questions. Let us pass to the first one. 

 

 
Fig. 1: The phase portrait for system (1) or (4), k=3, 
λ = 3 
  
 
4  The Boundary Value Problem 
Consider the system (4) with the boundary 
conditions: 

𝑥(0) = 0, 𝑥(1) = 0.      (5) 
 

We are looking for positive (and sometimes 
negative) in x, solutions of the BVP (4), (5).  

Due to this system's rich oscillatory behavior, 
multiple BVP solutions can be expected (4), (5). 

We use many results and techniques 
concerning the first zero function, as shown in [8]. 
Since we are interested in solutions to problems (4) 
and (5), we mean by the first zero function (usually 
also called the time map function) the minimal time 
needed for 𝑥(𝑡), 𝑥(0) = 0, 𝑦(0) =  𝑏, to vanish 
again. 

First, let us take the test. Consider the system (4) 
together with the initial conditions:  

𝑥(0) = 0,  𝑦(0) = 𝑏,     (6) 
 
where the parameter b is in the interval [-5, 5].  

 
We solve this problem numerically, and the 

calculation results are shown in Figure 2. 
Figure 2 shows that the first zero 𝑡1(𝑏) of the 

solution 𝑥(𝑡) crosses the level 𝑡 = 1  at least 12 
times. Therefore, at least 6 solutions of the BVP (4), 
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(5) with positive 𝑥(𝑡), and 6 solutions with 
negative 𝑥(𝑡)  exist. 

 

 
Fig. 2: The graph of the first zero function of the 
system (4) against the initial value b 
 

The respective values of b are computed and 
summarized in Table 1. 

 

Table 1. The initial data in (6) 
b value 

𝑏1 −3.8754 
𝑏2 −3.8699 
𝑏3 −3.1299 
𝑏4 −2.9169 
𝑏5 −0.3868 
𝑏6 −0.3398 
𝑏7 1.7236 
𝑏8 1.7389 
𝑏9 2.8642 
𝑏10 3.0808 
𝑏11 4.2249 
𝑏12 4.2307 

 
The trajectory parameterized by 𝑡 ∈ [0,1] and 

corresponding to 𝑦(0) = 𝑏1 is depicted in Figure 3. 

 
Fig. 3: Phase trajectory on the interval [0,1] with 
the initial values x(0) = 0, y(0) = b1 

 

The x - component and y-component of the 
solution (𝑥(𝑡), 𝑦(𝑡)) associated with the trajectory 
in Figure 3 are depicted in Figure 4 and Figure 5. 

 

 
Fig. 4: X-component of a solution 
 

 
Fig. 5: Y-component of a solution 
 

The first group of trajectories on the interval 
[0,1], where 𝑦(0) from b1 to b6, are presented in 
Figure 6. 

 

 
Fig. 6: The first group of trajectories (y(0) changing 
from b1 to b6) 
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The next group of trajectories on the interval 
[0,1], where y(0) takes values from b7  to b12,  is 
presented in Figure 7. 

 
Fig. 7: The group of trajectories (y(0) from b7 to 
b12) 
 
 
5  Linearization at Critical Points 
System (4) has 9 critical points, 5 of which are the 
centre points: (0,0),  (𝜆, 𝑘),  (𝜆, −𝑘),  (−1, 𝑘), 

(−1, −𝑘)  and 4 are the saddle: (−1,0),  (𝜆, 0), 
(0, 𝑘), (0, −𝑘). In this section, we investigate three 
critical points located at the x=0 axis and show that 
they are the first (−1,0),  the third (𝜆, 0)  saddle 
points, and the middle point (0,0) a center. 
 
Linearization of the system (4) at a critical point 
(𝑥∗, 𝑦∗) yields: 

{
𝑢′ = (−3𝑦∗2 + 𝑘2)𝑣

𝑣′ = (3𝑥∗2 + 2(1 − 𝜆)𝑥∗ − 𝜆)𝑢.
   (7) 

 
Consider the linearized system at the critical point 
(0,0) 

{ 𝑢′ = 𝑘2𝑣
𝑣′ = −𝜆𝑢.

        (8) 

 
The eigenvalues of the linearized system (6) are  
𝜇1,2 = ±𝑘𝜆𝑖, where 𝑖 is an imaginary unity. 
 
The system (6) can be rewritten in the form 

𝑢′′ = −𝑘2𝜆𝑢        (9) 
And there is a solution 

𝑢(𝑡) = sin 𝑘√𝜆𝑡,      (10) 
 

That satisfies the initial condition 𝑢(0) = 0 , 
𝑢’(0) ≠ 0. 

Appropriate solutions (𝑢(𝑡), 𝑣(𝑡)) of the linear 
system (7) provide approximations to solutions of 
the Cauchy problems (4), 𝑥(0) = 0,  𝑦(0) = ±𝜀, 
where 𝜀 > 0 is a small value. We suppose that 𝜀 is 
so small that 𝜀 < 𝛼2 where (0, 𝛼2)  is a point of 
intersection of the “upper” heteroclinic solution 
with the 𝑦-axis. Also, 𝜀 > 𝛼1  where (0, 𝛼1) is a 
point of intersection of the “lower” heteroclinic 
solution with the 𝑦 -axis. Two heteroclinic 
trajectories connect two saddle points 
(−1,0), (𝜆, 0). 

Therefore, if 𝑡(±𝜀)  is the time needed for a 
point to move along the phase trajectory of the 
system (4) from the point (0, ±𝜀) to (0, ∓𝜀)  then 

𝑡(±𝜀) ≈
𝜏

2
=

𝜋

𝑘√𝜆
, where 𝜏 =

2𝜋

𝑘√𝜆
 is the period of 

solution (10). This is true for 𝜀 close to zero. 
Consider solutions of system (4) and 

conditions 𝑥(0) = 0, 𝑦(0) = 𝜀, where 𝜀  close to 
zero. Then 𝑥(𝑡) has exactly 𝑛 zeros in the interval 

(0,1) (and 𝑥(1) ≠ 0) if the inequalities 𝜋𝑛

𝑘√𝜆
< 1 <

𝜋(𝑛+1)   

𝑘√𝜆
  hold. On the other hand, if 𝜀 → 𝛼2,  then 

the respective 𝑥(𝑡)  has no zeros in the interval 
(0,1]. 

Therefore, by continuity arguments, there are 
at least 𝑛  solutions to the problem (4), (5). 
Considering solutions of (4) with the initial values 
𝑥(0) = 0, 𝑦(0) = −𝜀, where 𝜀 changes from zero 
to −𝛼1,  we get additional at least 𝑛  solutions. 
Hence, at least 2𝑛 solutions with the trajectories in 
the central trivial annulus. 

Continue the analysis of critical points. They are 
nine, with 𝑥 є {−1, 0, 𝜆}, 𝑦 є {−𝑘, 0, 𝑘}. The matrix 
of coefficients of the linearized system (7) is 

𝐴 = (
0 −3𝑦∗2 + 𝑘2

3𝑥∗2 + 2(1 − 𝜆)𝑥∗ − 𝜆 0
)   

and the respective characteristic equation 
(concerning 𝜇)  det  (𝐴 − 𝜇 𝐸) = 0, 
where E is the unity matrix, is:    

𝜇2  = (𝑘2 − 3𝑦∗2)(3𝑥∗2 + 2(1 − 𝜆)𝑥∗ − 𝜆) (11) 
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Recall that (𝑥∗, 𝑦∗) are the coordinates of the critical 
point in question. 
a) Consider the critical points at (0, 𝑘)  and  

(0, −𝑘). The characteristic equation (11) takes 
the form 𝜇2 = 2𝜆,  and the critical points are 
saddles.  

b) Consider the critical points at (−1, −𝑘),  
(−1, 𝑘), (−1,0).  The characteristic equation 
(11) takes the form 𝜇2 = −2𝑘2(1 + 𝜆), and the 
characteristic numbers 𝜇1 and 𝜇2 are imaginary 
conjugates. The critical points 
(−1, −𝑘), (−1, 𝑘) are centers. This is not the 
case for the critical point (−1,0).  The 
characteristic equation is 𝜇2 = 𝑘2(1 + 𝜆), and 
the critical point (−1,0) is a saddle. 

c) Consider the critical points at (𝜆, −𝑘), (𝜆, 𝑘), 
(𝜆, 0). The characteristic equation (11) takes the 
form 𝜇2 = −2𝑘2𝜆(1 + 𝜆),  and the points 
(𝜆, −𝑘),  (𝜆, 𝑘)  are centers. The characteristic 
equation for the point (𝜆 0)is 𝜇2 = 𝑘2𝜆(1 + 𝜆), 
and this point is a saddle. 

 
This analysis is in agreement with the phase portrait 
in Figure 1. 
 
 
6  The Period Annuli 
In the phase portrait depicted in Figure 1, we see 
several period annuli. There are five trivial period 
annuli surrounding the centers at (−1, −𝑘) , 
(−1, 𝑘), (0,0), (𝜆, −𝑘), (𝜆, −𝑘). Only in the third 
annulus can a positive solution of the BVP exist. 
Does it exist depends on the result of the 
linearization around the origin. The condition for the 
existence is provided in Section 4. 

There are also four nontrivial period annuli 
containing more than one critical point (more details 
about nontrivial period annuli in [2]). Two of them 
are symmetric and include the groups of critical 
points with 𝑦 = 𝑘 and 𝑦 = −𝑘. Let us denote them 
PAU (period annulus upper) and PAL (period 
annulus lower). The outer trajectories in both period 
annuli pass close to the saddle point at (𝜆, 0). 
Therefore, they have very large (tending to infinity) 

periods. The inner trajectories in PAU and PAL pass 
by the saddles at (0, 𝑘) and (0, −𝑘), respectively. 
Their periods are unbounded also. Therefore, the 
trajectory with the minimal period exists in any of 
these annuli. If the time of the “positive half-period” 
is less than 1, then a positive solution of the BVP 
(4), (5) exists in both period annuli. 

The period annulus is also topologically 
equivalent to Figure 8, with the central point at 
(𝜆, 0). It also has outer and inner trajectories with 
arbitrarily large periods. Therefore, the situation is 
similar to the above described, and the existence of a 
positive solution of BVP depends on the minimal 
“positive half-period”. Moreover, an outer 
unbounded period annulus exists, containing all 
critical points and is potentially suitable for the 
existence of a positive solution. 

For the values 𝑘 = 3,  𝜆 = 3  Figure 3 
(corresponding to 𝑦(0) = 𝑏1) , Figure 8 
(corresponding to 𝑦(0) = 𝑏3; 𝑏7; 𝑏9) and Figure 9 
(corresponding to 𝑦(0) = 𝑏2; 𝑏8)  shows this 
positive solution. 

 
Fig. 8: Phase trajectory on the interval [0,1] with 
the initial values x(0) = 0, y(0) = b3; b7; b9 
 

The x-components of solutions with the initial 
values  𝑥(0) = 0,  𝑦(0) = 𝑏1; 𝑏3; 𝑏7; 𝑏9  and 
𝑥(0) = 0, 𝑦(0) = 𝑏2; 𝑏8 are depicted in Figure 10 
and Figure 11. 
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Fig. 9: Phase trajectory on the interval [0,1] with 
the initial values x(0) = 0, y(0) = b2; b8 
 

 
Fig. 10: x-component of a solution with the initial 
values x(0) = 0, y(0) = b1; b3; b7; b9 
 

 

Fig. 11: x-component of a solution with the initial 
values x(0) = 0, y(0) = b2; b8 
 
 
7  Solutions to the Boundary Value 

Problem 
Positive solutions of the BVP in question are 
detected numerically, but analytical proof can also 
be given in the spirit of [6], [8], [10]. The results of 
the computational study are depicted in Figure 8, 
Figure 9, Figure 10 and Figure 11.  

In Figure 8, three trajectories corresponding to 
the positive solutions of the BVP are depicted. One 

has that 𝑥(0) = 𝑥(1) = 0  and as a byproduct, 
𝑦(0) = 𝑏3, 𝑦(0) = 𝑏7, 𝑦(0) = 𝑏9 (the values of b 
are in Table 1). 

In Figure 9, two trajectories of the nontrivial 
period annuli PAU and PAL (section 6) 
corresponding to the positive solutions of the BVP 
are depicted. One has that 𝑥(0) = 𝑥(1) = 0;  𝑡ℎ𝑒 
additional information is that 𝑦(0) = 𝑏2,  𝑦(0) =
𝑏8.  The one big trajectory belonging to the outer 
nontrivial period annulus and associated with the 
positive solution of the BVP is depicted in Figure 3. 
Therefore, the following assertion is true. 
Proposition. The boundary value problem (4), (5), 
where 𝑘 = 3 and 𝜆 = 3, has six positive solutions. 
The respective segments of trajectories belong to six 
period annuli, of which three are trivial, and the 
remaining three are nontrivial. 
 
 
8   More on Figure 1 

The Hamiltonian 𝐻(𝑥, 𝑦) =
𝑥4

4
+

1−𝜆

3
𝑥3 −

𝜆

2
𝑥2 +

𝑦4

4
−

𝑘2

2
𝑦2 and the horizontal plane H=-11.3 are 

depicted in Figure 12 and Figure 13. 
 

 
Fig. 12: Hamiltonian. Top view 

 
Fig. 13: Hamiltonian. Bottom view 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2025.20.11 Anita Kirichuka, Felix Sadyrbaev

E-ISSN: 2224-2856 97 Volume 20, 2025



 

 

The level sets of Hamiltonian when combined 
form the phase portrait of the system under 
consideration. 

The minima of Hamiltonian can be observed in 
Figure 13. They correspond to the critical points of 
the type “center” (four of them). From these 
pictures, one can conclude that the center points 
corresponding to minima in the regions PAU and 
PAL are stable with respect to small perturbations. 
In these regions the graph of Hamiltonian has wells. 
The remaining center point at the origin which is 
seen in Figure 12 is unstable. Figure 14 shows the 
character of movement along the trajectories. 
 

 
Fig. 14: The vector field for the system (4), k = 3 
and λ = 3, saddles and centers marked 
 

 

9  Conclusion  
A class of nonlinear oscillators exhibiting various 
oscillatory behaviors is considered. Systems in this 
class contain period annuli, which are related to 
each other [8]. The properties of these period annuli 
significantly affect the number of solutions 
satisfying certain additional conditions, such as 
boundary conditions and the positivity condition. 
Motivating by an example presented in [9], we 
evaluated the number of positive solutions of the 
BVP (4), and (5) and provided exhaustive 
information about them. If the parameters 𝑘 and 𝜆 
vary so that topologically the phase portrait is 
similar, the trajectories going from the vertical axis 
to it again and lying in the right half-plane are saved, 
but the number of solutions to BVP may change. 
Computational analysis is needed. 

The proposed approach is suitable for systems of the 
form: 

{
𝑥′ = −𝑦 𝑃(𝑦),

𝑦′ =   𝑥 𝑄(𝑥),
 (12) 

 
where P and Q are polynomials. 
 

Studying various coupled oscillators' 
interactions remains an essential problem in the 
theory of ordinary differential equations. 
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