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Abstract: - A second-order system is widely recognized in control systems, as many practical systems are 
modeled using it. The system's response to a step input is well-defined, with mathematical expressions 
available for key parameters like rise time, settling time, and others. However, most of these equations apply 
specifically to an underdamped second-order system, where an explicit solution is relatively straightforward, 
except for the delay time equation, which is derived from a linear equation involving the damping factor, ϛ. 
This paper develops mathematical equations for both delay time and rise time-based on linear equations, 
allowing the extraction of a mathematical model from the system's output response for both low and high 
damping factor values. Additionally, the proposed equations can be applied to model higher-order systems by 
using an equivalent second-order system, with results showing that this model accurately represents the higher-
order system. Further analysis investigates the effect of the damping factor on natural frequency ratio (ϛ/wn) at 
high ϛ values, demonstrating that the system's response depends on ϛ/wn rather than the individual values of ϛ or 
wn. This implies that the system response remains consistent for a fixed ϛ/wn ratio. 
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1   Introduction 
Second-order systems are prevalent in various fields 
of engineering, particularly in control systems, 
where their dynamic behavior provides insight into 
stability, performance, and response characteristics. 
These systems are generally represented by a 
second-order differential equation, characterized by 
two main parameters: the natural frequency (ωn) and 
the damping ratio (ζ). These parameters govern how 
the system responds to inputs, which can range from 
oscillatory behavior in underdamped systems (ζ<1) 
to critically damped (ζ=1) or overdamped responses 
(ζ>1) that exhibit slower. Non-oscillatory behavior 
response of a second-order system is classified 
based on how it reacts to step inputs, and this is a 
concept central to control theory. This classification 
enables engineers to predict, design, and control 
system behaviors effectively. Understanding 
second-order systems' response characteristics—
such as peak time, overshoot, settling time, and 
steady-state error—is crucial for optimizing these 
applications and ensuring system stability and 
robustness, [1]. 
 

Delay time (td) and settling time(ts) are essential 
parameters in analyzing and designing second-order 
system. Where Delay time is the time it takes for the 
system's response to reach a specified fraction of the 
final value after a step input, typically 50% of the 
steady-state value [2], [3], [4], and the settling time 
[ts] is the time it takes for the system's response to 
remain within a specified percentage (commonly 
2% or 5%) of its final steady-state value after a step 
input, [2], [3], [4]. 

The formulas for delay time, settling time, and 
rise time are specifically derived for underdamped 
systems. These formulas are useful for establishing 
a mathematical model and solution for systems 
whose output behavior resembles that of an 
underdamped response. However, for overdamped 
second-order systems, the absence of precise 
formulas for delay time and settling time makes it 
challenging to directly determine key parameters 
such as the damping ratio (ζ) and natural frequency 
(ωn) from the system's output, [5], [6], [7].  

Most of the previous methods such as 
Vítečková’s method, Latzel’s method, Harriott’s 
method, Smith’s method, Strejc’s method and 
Sundaresan’s & Krishnaswamy’s method, are used 
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to model the overdamped system but none of them 
define equations for the delay and settling time of 
the system, [5], [6], [7], [8], [9], [10]. 

This paper addresses this gap by deriving 
mathematical formulas through numerical solutions 
of the second-order equation, accompanied by an in-
depth investigation of these formulas. 

 
 

2  Over damped Second Order System 
For the second-order system: 
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When ϛ > 1, the system has two real distinct poles, 
and the system is called an overdamped system. 
 
The solution to the over damped system is:  
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The delay time td is defined as the time required 

to reach 50% of the final value. td is calculated by 
substitute y(td) = 0.5 as follows: 
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There is no explicit solution for the above 

equation, but it can be solved using numerical 
techniques such as Newton Raphson method, before 
solving equ.(4) it can be simplified as follows: 
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where : 12
1  z  

12
2  z  

 
This simplification reduces the number of 

variables, where it can be solved for the variable 
(wntd) for a given value of ϛ. 

A simple code using Newton Raphson method 
can be used to solve the equation as follow: 
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where c =;1 (i.e 2*(1-y(td))=2*0.5=1) 
 

Settling time is defined as the time when the 
output reaches 95% or 98% of the final value for the 
first time. To find the settling time (ts) it is required 
to find the time when the output equal 0.98 from the 
final value, and this also leads to a nonlinear 
equation, which requires numerical solver to find its 
value. 
 
The same equation from equ.(6) to equ.(8) except 
that c = 2*(1-y(ts))=2*(1-0.98)=0.04. 
 
 
3   Results 
 Varying ϛfrom 1 to 5 in step of 0.01,  

 
Fig. 1: Relation between ϛ and (wnts) for low values 
of ϛ 
 

 
Fig. 2: Relation between ϛ and (wntd) for low values 
of ϛ 
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y = 8.41*x - 2.06

data 3

   linear
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y = 1.29*x + 0.307

data 1

   linear
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It is clear from the above Figure 1 that the 
relation between wntd and ϛ is linear and it can be 
given as follows:  

309.029.1  
dn

tw              (9) 
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Figure 2 also shows a linear relation between ϛ and
sn

tw , and the linear equation is given by: 
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The settling time (ts) can be defined as: 
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For larger values of ϛ , ϛ > 5 
 

 
Fig. 3: Relation between ϛ and (wnts) for large 
values of ϛ 
 

 
Fig. 4: Relation between ϛ and (wntd) for large 
values of ϛ 
 

Based on Figure 3 and Figure 4, the relation 
between the delay time (td) and ϛ is linear and 
between settling time(ts) and ϛ is also linear and can 
be given by : 
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Divide equ.(14) by equ.(13) yields to:  

dds
ttt 5714.5
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Fig. 5: Relation between ϛ and (ts/td) 
 

Figure 5, shows that the relation between the 
settling time and the delay time is constant for large 
value of ϛ, and this ratio is the same as the value-
driven in equ.(15) (i.e 5,5714). 
 
 
4   Validate the Results 
To prove the derived mathematical equation for the 
delay time and the settling time,  
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for this system 5
n

w and 2 , the response of 
the system is shown in Figure 6. 
 

 
Fig. 6: Output response for unit step input for the 
system T1(s) in equ.(16) 
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y = 7.8*x - 0.036

data 1

   linear
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y = 1.4*x + 0.004

data 1

   linear
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From Figure 6 the delay and settling time are 
0.5732s, 2.9761s respectively. 
 
Using equ.(10) and equ.(12) the values of 

d
t and 

s
t  

are:  
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for large value of ϛ, (i.e ϛ > 5), let  
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The response of the system for a unit step 

function is shown in Figure 7. From the figure the 
delay time and settling time are 2.7811s and 15.62s, 
respectively. 

 
First, the ratio between these values is: 

5.6162.7811 15.62   
using eu.(10) and equ.(2) : 
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Table 1 shows the values of the delay time td 

and settling time ts extracted from the response of 
the transfer function and delay time td

' and settling 
time ts

' using the mathematical equations. Relative 
error of delay time and settling time are shown in 
Table 1, where the error doesn’t exceed 1.4% and 
for large value of ϛ it approaches to 0%. 

Since the damping factor ϛ is determined the 
equation that can be used to evaluate delay time and 
settling time, it is worth showing the effect of wn in 
these equations. 

Equ.(10) and equ.(12) are used to calculate the 
delay time and settling time for low value of ϛ (i.e ϛ 
< 5), for all values of wn. Figure 7 shows that the 
relative error for both of delay time and settling time 
is less than 0.001 for ϛ =2. Equ.(13) and equ.(14) are 
used for ϛ > 5 regardless the value of wn. Value of 
wnis varied in Figure 8, the relative error doesn't 
exceed 0.001 for ϛ = 20. 
 
 
 
 
 

Table 1. Settling time (ts), delay time (td) extracted 
from output response, calculated time delay (td

') and 
calculated settling time (ts

') for several values of ϛ 
ϛ td 

[s] 
t'

d 

[s] 
ts 
[s] 

ts
'' 

[s] 
td 

relative 
error 
[%] 

ts 
relative 
error 
[%] 

2.0000 0.5700 0.5778 2.9800 2.9800 1.3684 0.9396 

2.5000 ..7050  .7068  .8000  3.8000  0.6953  0.4719 

3.0000  .8400  .8358  .6000  4.6000  0.6051  0.5990 

3.5000 0.9800  .9648  .4000  5.4000  0.9702  0.9118 

4.0000  .1150  .0938 6.1950  6.1950  1.2805  1.2686 

35.0000  .7250  .7230 54.835 54.8350  0.0684  0.0570 

40.0000  .1150 11.112 62.670  2.6700  0.0453  0.0306 

45.0000  .5050 12.501 70.505 70.5050  0.0398  0.0211 

50.0000  .8900 13.890 78.345 78.3450  0.0264  0.0140 

55.0000  .2800 15.279 86.175 86.1750  0.0206  0.0114 

60.0000 16.670 16.668 94.010 94.0100  0.0184  0.0096 

65.0000 18.060 18.057 01.845  01.845  0.0180  0.0082 

70.0000 19.450 19.446 09.680 109.680  0.0185  0.0070 

75.0000 20.835 20.835 17.520 117.520  0.0149  0.0061 

80.0000 22.225 22.224 25.350 125.350  0.0130  0.0053 

85.0000 23.615 23.613 33.185 133.185  0.0122  0.0045 

90.0000 25.005 25.002 41.020 141.020  0.0122  0.0039 

95.0000 26.390 26.391 48.855 148.855  0.0109  0.0034 

100.00 27.78 27.78 56.69 156.690  0.0094  0.0029 
 

Fig. 7: Relative error of td and ts for several values 
of wn for ϛ=2  
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Fig. 8: Relative error of td and ts for several values 
of wn for ϛ=20  
 
 
5  Extract the Second-Order Equation 

 from the Output Response  
A lot of systems can't be modeled mathematically, 
while its output response can be plotted, based on 
the output, a linearized model can be extracted from 
the output. As mentioned earlier, that over damped 
system response doesn't have an explicit equation to 
derive the value of ϛ and wn from them.  

The derived mathematical equation will be used 
here to get the linear model, first it will be extracted 
from a known second-order system to compare the 
results, then from a known higher-order system. 
 
5.1  Second Order System 

for 
10040
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ϛ=2 and wn =10, 
the response of the system is shown in Figure 9. 

 
Fig. 9: Output response for unit step input for the 
system T(s) in equ.(22) 
 

From Figure 9 td=0.2866 and ts=1.488. To 
extract the values of ϛ and wn from these values, we 
need to know the range of ϛ before determining 
which equation must be used, but this is impossible 
since the value of ϛ is unknown, so we can use the 
value of ts/td instead, as this value reaches the value 
of 5.571 then ϛ consider high, otherwise ϛ will be 
considered low. 

For the given values of td and ts, the value of ts/td 
= 5.192, which is less than the expected value for 
high value of ϛ( i.e 5.571), then the equ.(10) and 
equ.(12) can be used. 

 
Divideequ.(12) by equ.(10), then  
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Substitute this value in either equ.(10) or equ.(12). 
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Then the approximate mathematical model is:  
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The difference between the output from equ.(22) 
and equ.(23) is shown in Figure 10. 

 
Fig. 10: Difference between the output and the 
proposed output of T(s) in equ.(22) 
 
As it is shown in Figure 10, the difference between 
the two output is very small and less than 0.005. 
 
 
6   Extract the Second Order Equation 

for Higher Order System  
For higher order system, for example third order 
system, if the third pole is located closer to jw-axis 
than the poles of the second order system, then the 
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system can't be simplified by a second-order system. 
Since the response of the system can't distinguish 
between second-order or higher-order, it is hard to 
tell from the plot the order of the system. 

To investigate this point of the proposed 
mathematical model, several locations of the third 
pole will be assumed based on the locations of the 
second-order poles. 
 
Lets us continue with T(s) described in equ.(22), the 
locations of the poles are : 

6795.21
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several locations of the third pole s3 will be chosen" 
a. s3 near to jw-axis more than the two poles. 
 
For this purpose, let assume s3 = -0.4, then the 
response of the system shown in Figure 11. 

 
Fig. 11: Output response for unit step input for the 
system T(s) in equ.(22) after adding the third pole 
(s3=-0.4) 
 

From Figure 11, td = 2.1635s, ts = 10.2275s. 
Using equ.(12) and equ.(10) , then the values of ϛ = 
1.517 and wn = 0.9549. These values are far away 
from ϛ and wnof T(s), which are ϛ =2 and wn = 10. 

But this makes sense, since the two nearest 
poles to jw-axis are s2 and s3and they will be 
considered the two poles of the second-order system 
that determine the system response. Based on these 
poles, the value of ϛ and wn can be calculated as 
follows: 
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Note that these values are conceded with the 

values derived from the system response. 
Figure 12 shows the response of the third-order 

system and the response of the derived second-order 

system (i.e ϛ = 1.517 and wn = 0.9549), where it is 
difficult to distinguish between the two curves. 

Figure 13 shows the difference between the two 
outputs, the error doesn't exceed 0.002. 

 
Fig. 12: Response of the third-order system ( s3=-
0.4) and the response of the derived second-order 
system ϛ = 1.517 and wn = 0.9549) 
 

 
Fig. 13: Difference between the output of the third 
order system ( s3=-0.4) and the output of the derived 
second order system ϛ = 1.517 and wn = 0.9549) 
 
b. Locate the third pole between s1 and s2. 
Let s3 = -10. the response of the third-order system 
is shown in Figure 14. 

 
Fig. 14: Output response for unit step input for the 
system T(s) in equ.(22) after adding the third pole 
(s3= -10) 
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From Figure 14, the values of td = 0.396s and ts 
= 1.606s. 

Using these values to calculate the values of ϛ 
and wn by equ.(10) and equ.(12) ϛ = 1.042 and wn = 
4.176. 

The dominant poles of the third-order system is 
s2 and s3,by using these two poles to determine the 
values of ϛ and wn as follows : 
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Note that the values of ϛ and wn are not close. 

The response of the third-order system, the proposed 
second-order system (i.e ϛ = 1.042 and wn= 4.176) 
and the reduced second-order system ( i.e ϛ = 1.2263 
and wn = 5.17) are shown in Figure 15. 

 
Fig.15 Response of the third-order system (s3=-10), 
the proposed second-order system ( ϛ = 1.042 and 
wn = 4.176) and the reduced second-order system ( ϛ 
= 1.2263 and wn = 5.17) 
 

In Figure 15, the proposed second-order system 
is closer to the third-order system than the reduced 
second-order system. 
c. Locate the third pole to the left of s1. 
Let s1 = -50; the response of the third-order system 
is shown in Figure 16. 

 
Fig. 16: Output response for unit step input for the 
system T(s) in equ.(22) after adding the third pole 
(s3= -50) 

From the curve in Figure 16, the values of 
td=0.3070sand ts = 1.5100s. 
 

Using these values to calculate the values of ϛ 
and wn by equ.(10) and equ.(12) ϛ = 1.73 and wn = 
8.29. 
The difference between the response of the third-
order system and the proposed second-order system 
is shown in Figure 17. 

 
Fig. 17: Difference between the response of the 
third order system (s3=-50) and the proposed second 
order system (ϛ = 1.73 and wn = 8.29) 
 

For large values of ϛ , the ratio between ts and td 
is constant, which means that the two equations of 
both of td and ts are reduced to one equation and will 
be useful to get the value of ϛ/wn.  

To examine the effect of ϛ/wnfor a large value of 
ϛ, let ϛ > 20, and ϛ/wn=2, the response of several 
systems that have several values of ϛ and wn such 
that ϛ > 20 and ϛ/wn =2 are shown in Figure 18 and 
Figure 19. The main reason to plot system response 
in separate subplot because it is hard to distinguish 
between them if they are plotted at the same plot. 

 

 
Fig. 18: Output response for unit step input for the 
second-order system for ϛ/wn=2 with different 
values of ϛ and wn 

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
Step Response

Time (sec)

A
m

pl
itu

de

propose second order system

third order system

reduced second order system 

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Step Response

Time (sec)

A
m

p
lit

u
d
e

0 0.5 1 1.5 2 2.5
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

t[s]

e
rr

o
r

0 10 20 30 40
0

0.5

1

t[s]

re
s
p
o
n
s
e

zeta = 20 wn = 10

0 10 20 30 40
0

0.5

1

t[s]

re
s
p
o
n
s
e

zeta = 40 wn = 20

0 10 20 30 40
0

0.5

1

t[s]

re
s
p
o
n
s
e

zeta = 120 wn = 60

0 10 20 30 40
0

0.5

1

t[s]

re
s
p
o
n
s
e

zeta = 480 wn = 240

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2025.20.12 Hisham Odeh Alrawashdeh

E-ISSN: 2224-2856 106 Volume 20, 2025



 
Fig. 19: Output response for unit step input for the 
second-order system for ϛ/wn=2 with different 
values of ϛ and wn 

 
Fig. 20: Difference between output response for unit 
step input for the second-order system for ϛ/wn=2 
with different values of ϛ and wn 

 
Fig. 21: Output response for unit step input for the 
second order system for ϛ/wn= 0.5 with different 
values of ϛ and wn. 
 

To show this fact, the differences between the 
system responses are shown in Figure 20. 

The difference between the output with constant 
ϛ/wn is very small and does not exceed 0.0003. 

Figure 21, shows the difference between the 
output of the second-order system when ϛ and wn are 
varied with ϛ >20 and ϛ/wn=0.5.From this figure, it 
is clear that the differences are very small and do 
not exceed 0.0003. 

Based on Figure 20 and Figure 21, the output of 
the second-order system is the same ratio constant 
ϛ/wn for a large value of ϛ, and for that reason, this 
ratio is the only required information to represent 
the system. 

Figure 22 shows the response of the second-
order system for ϛ =20 and wn=5. From this figure 

td=5.5550s and ts = 31.3250s.  
Since the value of ts/td = 5.638 , and from this 

value, it can be concluded that the value of ϛ is 
large, and then equ.(13) and equ.(14) can be used. 
From equ.(13), the value of ϛ/wn =3.999, and this is 
the only information needed to represent the system. 
To verify the result, the response of the second-
order system for ϛ =40, and wn=10 to satisfy the 
ratio ϛ/wn = 4. The difference between the output of 
the two systems is shown in Figure 23. Where the 
difference is very small. 

 
Fig. 22: Output response for unit step input for the 
second order system for ϛ =20 and wn =5 

 
Fig. 23: Difference between output response for unit 
step input for the second order system (ϛ=20, wn=5) 
and the proposed second order system (ϛ=40, 
wn=10) 
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7   Conclusion 
Mathematical equations for delay time and rise time, 
derived from numerical analysis of an overdamped 
second-order system, reveal a linear relationship 
with the damping factor, ϛ. Two distinct equations 
were formulated to address both low and high 
values of ϛ, and the results demonstrate the proposed 
model's accuracy, showing minimal modeling error. 
Using these equations, an equivalent second-order 
system can effectively model a higher-order 
overdamped system. For large ϛ values, it is shown 
that the system’s response is primarily governed by 
the ratio ϛ/wn, rather than by the individual values of 
ϛ and wn. This ratio, which can be easily extracted 
from the model, is the key parameter needed for 
accurate system modeling. 
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