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1. Introduction 

    Many interesting equations of mathematical physics have 
their roots in the nineteenth century, and arose then due to 
their various applications in physics. Their solutions have 
been expressed in the forms of integral functions which gave 
rise to various special functions that we know today.  
 
    Two examples of the said equations are Airy’s and 
Weber’s differential equations. Both equations continue to 
receive considerable attention in the literature (cf. [1, 2, 3, 4] 
and the references therein) due to their various practical 
applications and theoretical implications. In addition to its 
direct applicability in the study of optics, fluid flow and 
electromagnetism, many other differential equations in 
mathematical physics can be reduced to Airy’s or Weber’s 
equations by an appropriate change of variables.  
 
    Their theoretical implications are found in the introduction 
of other functions in seeking their solutions, and infinite 
series analysis of their solutions and the functions that are 
expressible in terms of Airy’s functions and Weber’s 
functions (cf. [5, 6, 7] and the references therein). In addition, 
these functions contribute to the creation of knowledge in 
their extensions to large arguments and complex domains of 
validity, [8], and generalizations of these functions whenever 
possible and necessary, [9]. 
 
    Computationally, Airy’s, Weber’s, and other related 
special functions continue to represent a challenge and give 
rise to the need for efficient computational algorithms, (cf. 
[10, 11, 12] and the references therein). In fact, a large 
number of scientists have devoted the better parts of their 
careers to provide us with the State-of-the-Art computational  
 

 
methodologies of these special functions (cf. [13, 14, 15, 16, 
17] and the references therein). 
 
    Although Airy’s and Weber’s equations started out in their 
homogeneous forms, it is now evident that many applications 
require these equations in their more general, inhomogeneous 
forms with forcing functions that can be either constant of 
variable. For instance, Airy’s inhomogeneous equation 
proved to be a valuable tool in the analysis of flow over 
porous layers in the presence of a transition layer, wherein 
Nield and Kuznetsov [18] showed that Brinkman’s equation, 
which governs the flow in the variable permeability transition 
layer, can be reduced to Airy’s equation.  Abu Zaytoon et.al. 
[19, 20] provided models of variable permeability porous 
layers that resulted in reducing the governing equations to the 
generalized Airy’s equation and Weber’s equation. 
 
    Applications of the inhomogeneous Airy’s and Weber’s 
equations underscore the fundamental importance of solving 
their initial and boundary value problems, and providing the 
necessary computational methodologies to evaluate their 
integral functions. To this end, Nield and Kuznetsov [18] 
found it convenient to define a new integral function in terms 
of Airy’s functions and their integrals. This provided a 
methodology of handling the inhomogeneous Airy’s equation 
with a constant forcing function.  
 
    Properties of this newly-introduced integral function have 
been studied by Hamdan and Kamel, [21] and [22], who also 
introduced an integral function to express the particular 
solution of Airy’s inhomogeneous equation with a variable 
forcing function. Integral functions suitable for expressing 
particular solutions of the generalized Airy’s equation and the 
generalized Weber’s equation were introduced by Abu 
Zaytoon et.al. [19], [20], and Alzahrani et.al. [23], and 
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analyzed extensively by the same authors (cf. [24, 25, 6, 27, 
28, 29, 30, 31]). 
 
    The current work stems from our belief that knowledge of 
the equations of mathematical physics, and their associated 
solutions in the forms of integral and special functions, is an 
important aspect of modern research. These functions 
represent our mathematical treasure, and their computations 
are an integral part of our methodologies to expand this 
knowledge.  
 
    While we feel this is just the tip of the iceberg when it 
comes to advancing knowledge from homogeneous to 
inhomogeneous equations, and that there are many other 
equations to consider, our goal here is to provide this most up 
to date and comprehensive knowledge of six functions that 
have been developed over the past decade. Three classes of 
the Nield-Kuznetsov functions are considered (the Standard, 
the Generalized, and the Parametric Nield-Kuznetsov 
functions), each of which is of two kinds: the first and second 
kinds. They cover the two cases of inhomogeneities: a 
constant forcing function (Nield-Kuznetsov functions of the 
first kind) and variable forcing functions (Nield-Kuznetsov 
functions of the second kind).   
 
    In this work, we provide details of their derivations, and 
their ascending series representations that are suitable for 
efficient computations. Some sample computations are 
provided for illustration. 

 

2. The Standard Nield-kuznetsov 

Functions  

2.1 Initial Value Problem 
    Consider the inhomogeneous Airy’s ordinary differential 
equation (ODE): 
 
𝑑2𝑦

𝑑𝑥2 − 𝑥𝑦 = 𝑓(𝑥)                                                         (1) 
 
subject to the initial conditions  
 
𝑦(0) = 𝛼                                                                              (2) 
 
𝑑𝑦

𝑑𝑥
(0) = 𝛽                                                                            (3) 

 
where 𝛼 and 𝛽 are known values. 
 
    Solutions to (1) depend on the forcing, 𝑓(𝑥), which gives 
rise to the following four cases. 
 
2.2 The Case of 𝐟(𝐱) ≡ 𝟎. 
    In this case, general solution to (1) is given by 
 
𝑦 = 𝑎1𝐴𝑖(𝑥) + 𝑎2𝐵𝑖(𝑥)                                                       (4) 
 
where 𝑎1  and 𝑎2  are arbitrary constants, and the functions 
𝐴𝑖(𝑥)  and 𝐵𝑖(𝑥)  are two linearly independent functions 
known as Airy’s homogeneous functions of the first and 

second kind, respectively, and are defined by the following 
integrals, [4]: 
 
𝐴𝑖(𝑥) =

1

𝜋
∫ cos (𝑥𝑡 +

𝑡3

3
) 𝑑𝑡

∞

0
                                             (5) 

 
𝐵𝑖(𝑥) =

1

𝜋
∫ [sin (𝑥𝑡 +

𝑡3

3
) + exp (𝑥𝑡 −

𝑡3

3
)]𝑑𝑡

∞

0
                  (6) 

 
The non-zero Wronskian of 𝐴𝑖(𝑥) and 𝐵𝑖(𝑥) is given by, [4]: 
 
𝑊(𝐴𝑖(𝑥), 𝐵𝑖(𝑥)) = 𝐴𝑖(𝑥)

𝑑𝐵𝑖(𝑥)

𝑑𝑥
− 𝐵𝑖(𝑥)

𝑑𝐴𝑖(𝑥)

𝑑𝑥
=

1

𝜋
           (7) 

 
    Solution (4) satisfying the initial conditions (2) and (3) 
takes the form 
 

𝑦 = 𝜋 {
(3)

1
6𝛼

Γ(
1

3
)

−  
𝛽

(3)
1
6Γ(

2

3
)

} 𝐴𝑖(𝑥) + 𝜋 {
𝛼

(3)
1
3Γ(

1

3
)

+
𝛽

(3)
2
3Γ(

2

3
)

} 𝐵𝑖(𝑥)                                                          

                                                                                            (8) 
 
where Γ(. ) is the Gamma function. 
 

2.3 The Case of 𝐟(𝐱) = ∓
𝟏

𝛑
. 

    In these cases, general solution is given by a linear 
combination of Airy’s functions and Scorer functions, [4], 
[6], as follows. 
 
    For 𝑓(𝑥) = −

1

𝜋
, general solution of (1) is given by 

 
𝑦 = 𝑏1𝐴𝑖(𝑥) + 𝑏2𝐵𝑖(𝑥) + 𝐺𝑖(𝑥)                                          (9) 
 
where 𝑏1 and 𝑏2 are arbitrary constants, and  
 
𝐺𝑖(𝑥) =

1

𝜋
∫ sin (𝑥𝑡 +

𝑡3

3
) 𝑑𝑡

∞

0
                                            (10) 

 
    Solution to the initial value problem (1), (2), (3), in this 
case takes the form 
 

𝑦 = 𝜋 {
(3)

1
6𝛼

Γ(
1

3
)

−
𝛽

(3)
1
6Γ(

2

3
)

} 𝐴𝑖(𝑥) + 𝜋 {
𝛼

(3)
1
3Γ(

1

3
)

+
𝛽

(3)
2
3Γ(

2

3
)

−

1

3Γ(
1

3
)Γ(

2

3
)
} 𝐵𝑖(𝑥) + 𝐺𝑖(𝑥)                                                     (11) 

 
    For 𝑓(𝑥) =

1

𝜋
, general solution of (1) is given by 

 
𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) + 𝐻𝑖(𝑥)                                        (12) 
 
where 𝑐1 and 𝑐2 are arbitrary constants, and  
 
𝐻𝑖(𝑥) =

1

𝜋
∫ exp (𝑥𝑡 −

𝑡3

3
) 𝑑𝑡

∞

0
                                          (13) 

 
    Solution to the initial value problem (1), (2), (3), in this 
case takes the form 
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𝑦 = 𝜋 {
(3)

1
6𝛼

Γ(
1

3
)

−
𝛽

(3)
1
6Γ(

2

3
)

} 𝐴𝑖(𝑥) + 𝜋 {
𝛼

(3)
1
3Γ(

1

3
)

+
𝛽

(3)
2
3Γ(

2

3
)

−

4

(3)
2
3Γ(

1

3
)Γ(

2

3
)

} 𝐵𝑖(𝑥) + 𝐻𝑖(𝑥)                                                 (14) 

 
    In applying the initial conditions (2) and (3) to obtain 
values of the arbitrary constants, we relied on values of the 
integral functions 𝐴𝑖(𝑥), 𝐵𝑖(𝑥), 𝐺𝑖(𝑥), 𝐻𝑖(𝑥)  and their first 
derivatives at 𝑥 = 0, reported in [4]. These values are listed 
Tables 1(a) and 1(b), below. 
 

TABLE 1(a) 
Values of Airy’s and Scorer functions 

at 𝒙 = 𝟎 

𝐴𝑖(0) = √3𝐺𝑖(0) =
√3

(3)
7
6Γ(

2
3

)
 

𝐵𝑖(0) = 3𝐺𝑖(0) =
3

(3)
7
6Γ(

2
3

)
 

𝐺𝑖(0) =
𝐴𝑖(0)

√3
=

1

(3)
7
6Γ(

2
3

)
 

𝐻𝑖(0) =
2𝐵𝑖(0)

3
=

2

(3)
7
6Γ(

2
3

)
 

 
TABLE 1(b) 

Values of the first derivatives of 

Airy’s and Scorer functions at 𝒙 = 𝟎 

 

𝑑𝐴𝑖(0)

𝑑𝑥
= −√3

𝑑𝐺𝑖(0)

𝑑𝑥
=

−√3

(3)
5
6Γ(

1
3

)
 

𝑑𝐵𝑖(0)

𝑑𝑥
= 3

𝑑𝐺𝑖(0)

𝑑𝑥
=

3

(3)
5
6Γ(

1
3

)
 

𝑑𝐺𝑖(0)

𝑑𝑥
= −

1

√3

𝑑𝐴𝑖(0)

𝑑𝑥
=

1

(3)
5
6Γ(

1
3

)
 

𝑑𝐻𝑖(0)

𝑑𝑥
=

2

3

𝑑𝐵𝑖(0)

𝑑𝑥
=

2

(3)
5
6Γ(

1
3

)
 

  

2. 4 The Case of 𝐟(𝐱) = 𝐑 = 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 
    In Case 2, above, the Scorer functions furnish the particular 
solution to inhomogeneous Airy’s ODE for the special values 
𝑓(𝑥) = ∓

1

𝜋
. If 𝑓(𝑥) = 𝑅 is any constant or variable function 

of x, the Scorer functions do not directly render the needed 
particular solution. 
 
    When 𝑓(𝑥) = 𝑅 , a particular solution to ODE (1) is 
obtained using the method of variation of parameters to 
obtain the following general solution:  
 
𝑦 = 𝑑1𝐴𝑖(𝑥) + 𝑑2𝐵𝑖(𝑥) − 𝜋𝑅𝑁𝑖(𝑥)                                  (15) 
 
where 𝑑1 and 𝑑2 are arbitrary constants, and 
 

𝑁𝑖(𝑥) = 𝐴𝑖(𝑥) ∫ 𝐵𝑖(𝑡)𝑑𝑡
𝑥

0
− 𝐵𝑖(𝑥) ∫ 𝐴𝑖(𝑡)𝑑𝑡

𝑥

0
                  (16) 

 
    The integral function 𝑁𝑖(𝑥) is called the Standard Nield-

Kuznetsov Function of the First Kind. Nield and Kuznetsov, 
[18], introduced (16) in their study of the effect of transition 
layer in the flow over porous layers. Hamdan and Kamel [21] 
established the following relationships of 𝑁𝑖(𝑥) to Airy’s and 
Scorer’s functions: 
 
𝑁𝑖(𝑥) = 𝐺𝑖(𝑥) −

1

3
𝐵𝑖(𝑥)                                                    (17) 

𝑁𝑖(𝑥) =
2

3
𝐵𝑖(𝑥) − 𝐻𝑖(𝑥)                                                    (18) 

𝑁𝑖(𝑥) =
2

3
𝐺𝑖(𝑥) −

1

3
𝐻𝑖(𝑥)                                                    (18) 

 
    Using (10), (13) and (19), we obtain the following integral 
representation of 𝑁𝑖(𝑥): 
 
𝑁𝑖(𝑥) =

2

3𝜋
∫ sin (𝑥𝑡 +

1

3
𝑡3) 𝑑𝑡 −

1

3𝜋
∫ exp (𝑥𝑡 −

∞

0

∞

0
1

3
𝑡3) 𝑑𝑡                                                                               (20) 

 
    First and second derivatives of 𝑁𝑖(𝑥) are given by 
 
𝑑𝑁𝑖(𝑥)

𝑑𝑥
=

𝑑𝐴𝑖(𝑥)

𝑑𝑥
∫ 𝐵𝑖(𝑡)𝑑𝑡

𝑥

0
−

𝑑𝐵𝑖(𝑥)

𝑑𝑥
∫ 𝐴𝑖(𝑡)𝑑𝑡

𝑥

0
                   (21) 

 
𝑑2𝑁𝑖(𝑥)

𝑑𝑥2 = −𝑊(𝐴𝑖(𝑥), 𝐵𝑖(𝑥)) =
1

𝜋
                                      (22) 

 
    Equations (16) and (21) together with Tables 1(a) and 1(b), 
provide the following values at 𝑥 = 0: 
 
𝑁𝑖(0) =

𝑑𝑁𝑖(0)

𝑑𝑥
= 0                                                              (23) 

 
which are needed to evaluate the arbitrary constants, 𝑑1 and 
𝑑2, and write the solution to the initial value problem, (1), (2), 
(3), with 𝑓(𝑥) = 𝑅, as 

𝑦 = 𝜋 {
(3)

1
6𝛼

Γ(
1

3
)

−
𝛽

(3)
1
6Γ(

2

3
)

} 𝐴𝑖(𝑥) + 𝜋 {
𝛼

(3)
1
3Γ(

1

3
)

+

𝛽

(3)
2
3Γ(

2

3
)

} 𝐵𝑖(𝑥) − 𝜋𝑅𝑁𝑖(𝑥)                                                  (24) 

 

Remark 1. 

    We remark at the outset that in solving the initial value 
problem (1), (2), (3), and expressing the solution in terms of 
𝑁𝑖(𝑥), values of the arbitrary constants are independent of the 
forcing function. To illustrate this point further, when



1)( xf , solution to the initial value problem is simply 

given by equation (24) with 


1
R , while coefficients of 

Airy’s functions (values of the arbitrary constants) in the 
solution do not change. By comparison, when the general 
solution is expressed in terms of Scorer functions, 𝐺𝑖(𝑥) and 
𝐻𝑖(𝑥), coefficients of Airy’s functions do in fact change. 
   
2.5 The Case of 𝐟(𝐱) Being  General Function of 

𝐱 
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    When the forcing function is a general function of 𝑥 , 
particular solution of (1) can be obtained using variations of 
parameters as 𝜋𝐾𝑖(𝑥) − 𝜋𝑓(𝑥)𝑁𝑖(𝑥) , and the general 
solution to (1) thus takes the form 
 
𝑦 = 𝑒1𝐴𝑖(𝑥) + 𝑒2𝐵𝑖(𝑥) + 𝜋𝐾𝑖(𝑥) − 𝜋𝑓(𝑥)𝑁𝑖(𝑥)               (25) 
 
where 𝑒1  and 𝑒2  are arbitrary constants, and the function 
𝐾𝑖(𝑥), referred to as the Standard Nield-Kuznetsov Function 

of the Second Kind, takes the form 
 
𝐾𝑖(𝑥) = 𝐴𝑖(𝑥) ∫ {∫ 𝐵𝑖(𝜏)𝑑𝜏

𝑡

0
}

𝑥

0
𝑓′(𝑡)𝑑𝑡 −

𝐵𝑖(𝑥) ∫ {∫ 𝐴𝑖(𝜏)𝑑𝜏
𝑡

0
}

𝑥

0
𝑓′(𝑡)𝑑𝑡                                           (26) 

 
wherein 𝑓′  denotes the derivative of 𝑓  with respect to its 
argument. 
 
    Equation (26) can be written in the following form in order 
to establish the connection between 𝐾𝑖(𝑥) and 𝑁𝑖(𝑥) 
 
𝐾𝑖(𝑥) = 𝑓(𝑥)𝑁𝑖(𝑥) − {𝐴𝑖(𝑥) ∫ 𝑓(𝑡)𝐵𝑖(𝑡)

𝑥

0
𝑑𝑡 −

𝐵𝑖(𝑥) ∫ 𝑓(𝑡)𝐴𝑖(𝑡)
𝑥

0
𝑑𝑡}                                                    (27) 

 
    The following first derivative of 𝐾𝑖(𝑥) is obtained from 
(27): 
 
𝑑𝐾𝑖(𝑥)

𝑑𝑥
= 𝑓′(𝑥)𝑁𝑖(𝑥) + 𝑓(𝑥)

𝑑𝑁𝑖(𝑥)

𝑑𝑥
−

{
𝑑𝐴𝑖(𝑥)

𝑑𝑥
∫ 𝑓(𝑡)𝐵𝑖(𝑡)

𝑥

0
𝑑𝑡 −

𝑑𝐵𝑖(𝑥)

𝑑𝑥
∫ 𝑓(𝑡)𝐴𝑖(𝑡)𝑑𝑡

𝑥

0
}          

                                                                                          (28)  
    Equations (23), (27) and (28) furnish the values for 
𝐾𝑖(0) and 

𝑑𝐾𝑖(0)

𝑑𝑥
: 

 
𝐾𝑖(0) =

𝑑𝐾𝑖(0)

𝑑𝑥
= 0                                                             (29) 

 
    Using conditions (2) and (3), we verify that the values of 
arbitrary constants 𝑒1  and 𝑒2  are the same as 𝑑1  and 𝑑2 , 
respectively, and the solution to the initial value problem (1), 
(2) and (3), when 𝑓(𝑥) is a variable function of 𝑥, is given by 
 

𝑦 = 𝜋 {
(3)

1
6𝛼

Γ(
1

3
)

−
𝛽

(3)
1
6Γ(

2

3
)

} 𝐴𝑖(𝑥) + 𝜋 {
𝛼

(3)
1
3Γ(

1

3
)

+

𝛽

(3)
2
3Γ(

2

3
)

} 𝐵𝑖(𝑥) + 𝜋𝐾𝑖(𝑥) − 𝜋𝑓(𝑥)𝑁𝑖(𝑥)                        (30) 

 

 

Remark 2. 

    The function 𝑁𝑖(𝑥), defined in equation (16), is referred to 
as the Standard Nield-Kuznetsov Function of the First Kind. 
Particular solution to the inhomogeneous Airy’s ODE with a 
constant forcing function is expressed in terms of 𝑁𝑖(𝑥). This 
function was introduced by Nield and Kuznetsov, [18]. Its 
extensive properties and relationship to other functions, such 
as Bessel functions, were studied in details and established in 
the work of Hamdan and Kamel, [21]. 
 

    The function 𝐾𝑖(𝑥), defined in equation (27), is referred to 
as the Standard Nield-Kuznetsov Function of the Second 

Kind. Particular solution to the inhomogeneous Airy’s ODE 
with a variable forcing function is expressed in terms of 
𝐾𝑖(𝑥). This function was introduced by Hamdan and Kamel, 
[21]. 
 
2.6 Computations of the Standard Nield-

Kuznetsov Functions 
    The standard Nield-Kuznetsov functions of the first and 
second kinds can be evaluated using asymptotic or ascending 
series (cf. [4, 18, 19, 20, 22, 26, 27]. Ascending series 
expressions are shown below, [26, 27]: 
 
 𝑁𝑖(𝑥) =

2√3𝑎1𝑎2 [{∑ (
1

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘

(3𝑘)!
} {∑ (

2

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘+2

(3𝑘+2)!
} −

{∑ (
1

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘+1

(3𝑘+1)!
} {∑ (

2

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘+1

(3𝑘+1)!
}]                          (31) 

 
𝐾𝑖(𝑥) =

2√3𝑎1𝑎2 [{∑ (
1

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘

(3𝑘)!
} {∑ (

2

3
)

𝑘

∞
𝑘=0 ∫ 𝐹(𝑡)

𝑥

0

3𝑘𝑡3𝑘

(3𝑘)!
} −

{∑ (
1

3
)

𝑘

∞
𝑘=0 ∫ 𝐹(𝑡)

𝑥

0

3𝑘𝑡3𝑘−1

(3𝑘−1)!
} {∑ (

2

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘+1

(3𝑘+1)!
}]               (32) 

 
where 
 
𝑎1 = 𝐴𝑖(0) ≈ 0.3550280538878172  
 
𝑎1 = −

𝑑

𝑑𝑥
𝐴𝑖(0) ≈ 0.2588194037928067  

 
(𝑏)𝑘 =

Γ(𝑏+𝑘)

Γ(𝑏)
= 𝑏(𝑏 + 1)(𝑏 + 2) … (𝑏 + 𝑘 − 1); 𝑘 > 0    

is the Pochhammer symbol, [7], where (𝑏)0 = 1. 
 
    Extensive tabulations have been carried out by Alzahrani 
et.al. [28, 29, 30, 31]. In Tables 2(a) and 2(b), below, are 
some values of 𝐾𝑖(𝑥)  and 𝑁𝑖(𝑥)  at selected values of 𝑥 . 
Results were obtained using ascending series truncated after 
10 terms. 
 

TABLE 2(a) 
𝑭(𝒙) 𝑲𝒊(𝒙 = 𝟎. 𝟏) 𝑲𝒊(𝒙 = 𝟎. 𝟓) 𝑲𝒊(𝒙 = 𝟏) 

𝑥 −0.001591629009812 −0.04003797109116 −0.16725609184051 
𝑥2 −0.000106106832220  −0.01331827008945 −0.10968956771722 
𝑠𝑖𝑛𝑥 −0.001590303129065  −0.03921345759006 −0.15411426990974 
𝑒𝑥 −0.033479676987410  −0.20843678166552 −0.58437891995633 

 
TABLE 2(b) 

𝑵𝒊(𝒙 = 𝟎. 𝟏) 𝑵𝒊(𝒙 = 𝟎. 𝟓) 𝑵𝒊(𝒙 = 𝟏) 

−0.001591629009 −0.04003797119 − 0.1672560919 
 
 

3. The Generalized Nield-kuznetsov 

Functions 

3.1 Solution to the Homogeneous Generalized 

Airy’s Equation 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2021.20.20

M.H. Hamdan, S. Jayyousi Dajani, 
M.S. Abu Zaytoon

E-ISSN: 2224-2678 181 Volume 20, 2021



    Consider the generalized inhomogeneous Airy’s ODE of 
the form: 
 
𝑑2𝑦

𝑑𝑥2 − 𝑥𝑛𝑦 = 𝑓(𝑥)                                                               (33) 
 
    In their elegant analysis, Swanson and Headley, [9], 
provided solution to the homogeneous part of (33) as a linear 
combination of the linearly independent functions 𝐴𝑛(𝑥), and 
𝐵𝑛(x), referred to as the generalized Airy’s functions of the 
first and second kinds, respectively, namely: 
 
𝑦 = 𝑎1𝐴𝑛(𝑥) + 𝑎2𝐵𝑛(𝑥)                                                    (34) 
 
where 𝑎1 and 𝑎2 are arbitrary constants and 
 
𝐴𝑛(𝑥) =

2𝑝

𝜋
𝑠𝑖𝑛(𝑝𝜋)(𝑥)1/2𝐾𝑝(𝜁)                                        (35) 

𝐵𝑛(𝑥) = (𝑝𝑥)
1

2(𝐼−𝑝(𝜁) + 𝐼𝑝(𝜁)                                          (36) 
 
    The terms 𝐼𝑝 𝑎𝑛𝑑 𝐾𝑝  are the modified Bessel functions  
defined as:    
 
𝐼𝑝(𝜁) = 𝑖−𝑝𝐽𝑝(𝑖𝜁) = ∑

1

𝑚!𝛤(𝑚+𝑝+1)

∞
𝑚=1 (

𝜁

2
)2𝑚+𝑝                 (37) 

 
𝐾𝑝(𝜁) =

𝜋

2

(𝐼−𝑝(𝜁)−𝐼𝑝(𝜁))

𝑠𝑖𝑛(𝑝𝜋)
                                                       (38) 

 
with 𝑝 =

1

𝑛+2
, 𝜁 = 2𝑝𝑥, and 𝛤(. ) is the gamma function.    

The Wronskian of 𝐴𝑛(𝑥) and 𝐵𝑛(𝑥) is given by:  
 
𝑊(𝐴𝑛(𝑥), 𝐵𝑛(𝑥)) =

2

𝜋
𝑝

1

2 𝑠𝑖𝑛(𝑝𝜋)                                     (39) 
 
and the first derivatives of the generalized Airy’s functions 
are given by, [9]: 
 
𝑑𝐴𝑛(𝑥)

𝑑𝑥
= −

2𝑝

𝜋
sin(𝑝𝜋) (𝑥)

𝑛+1

2 𝐾𝑝−1(𝜁)                               (40) 
𝑑𝐵𝑛(𝑥)

𝑑𝑥
= 𝑝

1

2(𝑥)
𝑛+1

2 [𝐼1−𝑝(𝜁) + 𝐼𝑝−1(𝜁)]                              (41) 
 
    Swanson and Headley [9] extensively studied properties of 
the generalized Airy’s functions, 𝐴𝑛(𝑥), and 𝐵𝑛(x), and their 
connections to other functions, such as Bessel functions. 
 
    In their modelling of flow through variable permeability 
porous layers, Abu Zaytoon et.al., [19], showed that the flow 
equations could be reduced to the inhomogeneous Airy’s 
ODE (33). In order to obtain solutions to initial value 
problems or boundary value problems, they solved (33) using 
variations of parameters and obtained the following cases of 
solutions. 
 

3.2 The Case of Constant Forcing Function 
    When 𝑓(𝑥) = 𝑅 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 , Abu Zaytoon et.al., [19], 
showed that the general solution to (33) takes the form 
 
𝑦𝑛 = 𝑏1𝐴𝑛(𝑥) + 𝑏2𝐵𝑛(𝑥) −

𝜋𝑅

2√𝑝 sin(𝑝𝜋)
𝑁𝑛(𝑥)                    (42) 

 
where 𝑏1 and 𝑏2 are arbitrary constants, and 

 
𝑁𝑛(𝑥) = 𝐴𝑛(𝑥) ∫ 𝐵𝑛

𝑥

0
(𝑡)𝑑𝑡 − 𝐵𝑛(𝑥) ∫ 𝐴𝑛

𝑥

0
(𝑡)𝑑𝑡           (43) 

 

with first derivative given by 
 
𝑑𝑁𝑛(𝑥)

𝑑𝑥
=

𝑑𝐴𝑛(𝑥)

𝑑𝑥
∫ 𝐵𝑛

𝑥

0
(𝑡)𝑑𝑡 −

𝑑𝐵𝑛(𝑥)

𝑑𝑥
∫ 𝐴𝑛

𝑥

0
(𝑡)𝑑𝑡              (44) 

 
Remark 3. 

    Integral function (43) is termed the Generalized Nield-

Kuznetsov Function of the First Kind, as introduced by Abu 
Zaytoon et.al. [19]. Clearly, when n=1, this function reduces 
to the Standard Nield-Kuznetsov Function of the First Kind, 
equation (16). 
 

3.3 The Case of Variable Forcing Function 
    When the forcing function, 𝑓(𝑥), is a variable function of 
𝑥, solution to (33) takes the form, [29]: 
 
𝑦𝑛 = 𝑐1𝐴𝑛(𝑥) + 𝑐2𝐵𝑛(𝑥) −

𝜋

2√𝑝 sin(𝑝𝜋)
𝐾𝑛(𝑥)                      (45) 

 
where 𝑐1 and 𝑐2 are arbitrary constants, and 
 
𝐾𝑛(𝑥) = 𝐵𝑛(𝑥) ∫ 𝐹(𝑡)

𝑑𝐴𝑛(𝑡)

𝑑𝑡
𝑑𝑡 − 𝐴𝑛(𝑥) ∫ 𝐹(𝑡)

𝑑𝐵𝑛(𝑡)

𝑑𝑡
𝑑𝑡

𝑥

0

𝑥

0
     

                                                                                          (46) 
    The function 𝐾𝑛(𝑥) is referred to as the Generalized Nield-
Kuznetsov Function of the Second Kind. Its first derivative is 
given by, [29]: 
 
𝑑𝐾𝑛(𝑥)

𝑑𝑥
=

𝑑𝐵𝑛(𝑥)

𝑑𝑥
∫ 𝐹(𝑡)

𝑑𝐴𝑛(𝑡)

𝑑𝑡
𝑑𝑡 −

𝑥

0
𝑑𝐴𝑛(𝑥)

𝑑𝑥
∫ 𝐹(𝑡)

𝑑𝐵𝑛(𝑡)

𝑑𝑡
𝑑𝑡

𝑥

0
−

2√𝑝 sin(𝑝𝜋)

𝜋
𝐹(𝑥)                          (47) 

 
wherein 𝐹′ ≡ 𝑓. 
 

A. Computations of the Standard Nield-Kuznetsov 

Functions 

    Following Swanson and Headley, [9], the generalized 
Airy’s functions are evaluated as follows. 
 
Let 𝑝 =

1

𝑛+2
 and 

 
𝛼𝑛 =

(𝑝)1−𝑝

Γ(1−𝑝)
   and   𝛽𝑛 =

(𝑝)𝑝

Γ(𝑝)
                                              (48) 

 

𝑔𝑛1(𝑥) = 1 + ∑ 𝑝2𝑘∞
𝑘=1 ∏

𝑥(𝑛+2)𝑘

𝑗(𝑗−𝑝)
𝑘
𝑗=1                                   (49) 

 

𝑔𝑛2(𝑥) = 1 + ∑ 𝑝2𝑘∞
𝑘=1 ∏

𝑥(𝑛+2)𝑘

𝑗(𝑗−𝑝)
𝑘
𝑗=1                                  (50) 

 
then 
 
𝐴𝑛(𝑥) = 𝛼𝑛𝑔𝑛1(𝑥) − 𝛽𝑛𝑔𝑛2(𝑥)                                        (51) 
𝐵𝑛(𝑥) =

1

√𝑝
[𝛼𝑛𝑔𝑛1(𝑥) + 𝛽𝑛𝑔𝑛2(𝑥)]                                 (52) 

 
    The generalized Nield-Kuznetsov functions can be 
evaluated using (41)-(44) and the following expressions, [19, 
29, 30, 31] 
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𝑁𝑛(𝑥) =

2

√𝑝
𝛼𝑛𝛽𝑛{𝑔𝑛1(𝑥) ∫ 𝑔𝑛2(𝑡)𝑑𝑡 −

𝑥

0

𝑔𝑛2(𝑥) ∫ 𝑔𝑛1(𝑡)𝑑𝑡
𝑥

0
}                                                          (53) 

 
𝐾𝑛(𝑥) =

−2

√𝑝
𝛼𝑛𝛽𝑛 {𝑔𝑛1(𝑥) ∫ 𝐹(𝑡)

𝑑

𝑑𝑡
𝑔𝑛2(𝑡)𝑑𝑡 −

𝑥

0

𝑔𝑛2(𝑥) ∫ 𝐹(𝑡)
𝑑

𝑑𝑡
𝑔𝑛1(𝑡)𝑑𝑡

𝑥

0
}                                               (54) 

 
    Upon evaluating (51), (52), (43), (44), (46), and (47)  at 
𝑥 = 0, we obtain the following values in Table 3.. 
 

TABLE 3 
Values of Generalized Airy’s 

and Nield-Kuznetsov Functions, 

and Derivatives at Zero 

 

𝐴𝑛(0) =
(𝑝)1−𝑝

Γ(1 − 𝑝)
 

𝐵𝑛(0) =
(𝑝)1/2−𝑝

Γ(1 − 𝑝)
 

𝑑𝐴𝑛(0)

𝑑𝑥
= −

(𝑝)𝑝

Γ(𝑝)
 

𝑑𝐵𝑛(0)

𝑑𝑥
= −

(𝑝)𝑝−1/2

Γ(𝑝)
 

𝑁𝑛(0) = 0 
𝑑𝑁𝑛(0)

𝑑𝑥
= 0 

𝐾𝑛(0) = 0 
𝑑𝐾𝑛(0)

𝑑𝑥
= −

2√𝑝 sin(𝑝𝜋)

𝜋
𝐹(0) 

 
 

    Computations of the generalized Nield-Kuznetsov 
functions, using (53) and (54), have been carried out and 
tabulated by Alzahrani et.al. [30], for n=1,2,…,10. It is worth 
noting that (54) reduces to (53) when 𝐹(𝑥) = 𝑥, and 𝑥 = 1, 
as verified by values of 𝑁𝑛(1) and 𝐾𝑛(1) in Tables 4 and 5 
below. 

 
TABLE 4 

Values of 𝑵𝒏(𝟏) for 𝒏 =
𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝒂𝒏𝒅 𝟏𝟎 

𝑁1(1) = − 0.1671679498 
𝑁2(1) = − 0.1163218192 

𝑁3(1) = − 0.08567790804 
𝑁4(1) = − 0.06614082173 
𝑁5(1) = − 0.05292832891 
𝑁10(1) = − 0.02391327336 

 
TABLE 5 

Values 

of 𝑲𝒏(𝟏) 

𝑭(𝒙) = 𝒙 𝑭(𝒙) = 𝒙𝟐 

𝐾𝑛(1) 𝐹(𝑥) = 𝑥 𝐹(𝑥) = 𝑥2 
𝐾1(1) −0.1671679498 −0.1095475388 
𝐾2(1) −0.1163218194 −0.07681056585 
𝐾3(1) −0.08567790816 −0.05678057772 
𝐾4(1) −0.06614082166 −0.04391997436 
𝐾5(1) −0.05292832894 −0.03518808431 

𝐾10(1) −0.02391327336 −0.01593053627 
 
 
 

4. The Parametric Nield-kuznetsov 

Functions  

A. 4.1 Weber’s Homogeneous Equation 

    Weber’s inhomogeneous differential equation finds 
applications in the study of fluid flow through porous layers 
with variable permeability, [20]. Weber’s homogeneous 
equation takes the form 
𝑑2𝑦

𝑑𝑥2 + (𝑎𝑥2 + 𝑏𝑥 + 𝑐)𝑦 = 0                                                (55) 

where cba ,,  are constants and the independent variable, 𝑥, 
is in general complex.  

    However, it has been reported in the literature in other 
forms, (cf. [1, 2, 3]) that include three distinctive forms whose 
mathematical and physical applications have been discussed 
in the work of Temme, [2]. Of interest, due to its validity in 
the real domain and its usefulness in modelling practical 
situations in the real plain, is Weber’s equation of the form 
𝑑2𝑦

𝑑𝑥2 + (
𝑥2

4
− 𝑎) 𝑦 = 0                                                         (56) 

    Equation (56) possesses the solutions ),( xaW  , where 
the variable  𝑥 and the parameter 𝑎 are real numbers. These 
solutions represent a linearly independent, numerically 
satisfactory pair of solutions, [2], for all x , with the 
Wronskian given by 
 
   𝓌( ),( xaW , ),( xaW  )=1.                                         (57) 
 
    Abu Zaytoon et.al. [20] encountered applications in the 
study of flow through porous layers, of the inhomogeneous 
Weber’s equation, namely: 
𝑑2𝑦

𝑑𝑥2 + (
𝑥2

4
− 𝑎) 𝑦 = 𝑓(𝑥)                                                    (58) 

 
and showed that a particular solution is given by 
 
𝑦𝑝 = 𝑊(𝑎, −𝑥) ∫ 𝑓(𝑡)𝑊(𝑎, 𝑡)𝑑𝑡

𝑥

0
−

𝑊(𝑎, 𝑥) ∫ 𝑓(𝑡)𝑊(𝑎, −𝑡)𝑑𝑡
𝑥

0
                                                (59) 

 
The following two cases arise, depending on 𝑓(𝑥). 
 
4.2 The Case of 𝐟(𝐱) = 𝐑 = 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 
    If 𝑓(𝑥) = 𝑅, then 
 
𝑦𝑝 = 𝑅{𝑊(𝑎, −𝑥) ∫ 𝑓(𝑡)𝑊(𝑎, 𝑡)𝑑𝑡

𝑥

0
−

𝑊(𝑎, 𝑥) ∫ 𝑓(𝑡)𝑊(𝑎, −𝑡)𝑑𝑡}
𝑥

0
                                               (60) 

 
    In equation (60), the expression in brackets is termed the 
Parametric Nield-Kuznetsov Function of the First Kind, 
which depends on parameter 𝑎, and is denoted and given by  
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𝑁𝑤(𝑎, 𝑥) = 𝑊(𝑎, 𝑥) ∫ 𝑊(𝑎, −𝑡)𝑑𝑡
𝑥

0
−

𝑊(𝑎, −𝑥) ∫ 𝑊(𝑎, 𝑡)𝑑𝑡
𝑥

0
                                                     (61) 

 
with a first derivative given by 
 
𝑑𝑁𝑤(𝑎,𝑥)

𝑑𝑥
=

𝑑𝑊(𝑎,𝑥)

𝑑𝑥
∫ 𝑊(𝑎, −𝑡)𝑑𝑡

𝑥

0
+

𝑑𝑊(𝑎,−𝑥)

𝑑𝑥
∫ 𝑊(𝑎, 𝑡)𝑑𝑡

𝑥

0
      

                                                                                          (62) 
    General solution to (58) can thus be written as: 
 
𝑦 = 𝑐1𝑊(𝑎, 𝑥) + 𝑐2𝑊(𝑎, −𝑥) − 𝑅𝑁𝑤(𝑎, 𝑥)                     (63) 
 
where 𝑐1 and 𝑐2 are arbitrary constants. 
 
4.3 The Case of 𝐟(𝐱) Being a Variable Function 

of 𝐱 
    If 𝑓(𝑥) is a variable function of 𝑥, then 
 
𝑦𝑝 = 𝑊(𝑎, −𝑥) ∫ 𝐹′(𝑡)𝑊(𝑎, 𝑡)𝑑𝑡

𝑥

0
−

𝑊(𝑎, 𝑥) ∫ 𝐹′(𝑡)𝑊(𝑎, −𝑡)𝑑𝑡
𝑥

0
                                             (64)       

 
where 𝐹′(𝑡) = 𝑓(𝑡). 
 
    Using integration by parts, equation (64) can be written as: 
 
𝑦𝑝 = −{𝑊(𝑎, −𝑥) ∫ 𝐹(𝑡)

𝑑𝑊(𝑎,𝑡)

𝑑𝑡
𝑑𝑡

𝑥

0
+

𝑊(𝑎, 𝑥) ∫ 𝐹(𝑡)
𝑑𝑊(𝑎,−𝑡)

𝑑𝑡
𝑑𝑡}

𝑥

0
                                              (65)       

 
    The expression on the right-hand-side of (53) depends on 
parameter 𝑎 , and is reminiscent of the Nield-Kuznetsov 
function of the second kind. It is referred to as the Parametric 

Nield-Kuznetsov Function of the Second Kind, denoted by 
𝐾𝑤(𝑎, 𝑥), and defined as: 
 
𝐾𝑤(𝑎, 𝑥) = 𝑊(𝑎, −𝑥) ∫ 𝐹(𝑡)

𝑑𝑊(𝑎,𝑡)

𝑑𝑡
𝑑𝑡

𝑥

0
+

𝑊(𝑎, 𝑥) ∫ 𝐹(𝑡)
𝑑𝑊(𝑎,−𝑡)

𝑑𝑡
𝑑𝑡

𝑥

0
                                                (66) 

 
with first derivative given by 
 
𝑑𝐾𝑤(𝑎,𝑥)

𝑑𝑥
=

𝑑𝑊(𝑎,𝑥)

𝑑𝑥
∫ 𝐹(𝑡)

𝑑𝑊(𝑎,−𝑡)

𝑑𝑡
𝑑𝑡

𝑥

0
−

𝑑𝑊(𝑎,−𝑥)

𝑑𝑥
∫ 𝐹(𝑡)

𝑑𝑊(𝑎,𝑡)

𝑑𝑡
𝑑𝑡

𝑥

0
− 𝐹(𝑥)                                     (67) 

 
    General solution to (58) can thus be written as: 
 
𝑦 = 𝑑1𝑊(𝑎, 𝑥) + 𝑑2𝑊(𝑎, −𝑥) − 𝐾𝑤(𝑎, 𝑥)                        (68) 
 
where 𝑑1 and 𝑑2 are arbitrary constants. 
 
    In solving initial and boundary value problems involving 
the Weber ODE, one requires values of the parametric Nield-
Kuznetsov functions at given values of the argument. Values 
at x = 0 of 𝑊(𝑎, 𝑥), 𝑑𝑊

𝑑𝑥
(𝑎, 𝑥) are given by, [14, 15, 17]: 

𝑊(𝑎, 0) =
1

(2)
3
4

|
𝛤(

1

4
+

1

2
𝑖𝑎)

𝛤(
3

4
+

1

2
𝑖𝑎)

|

1

2

                                                  (69) 

𝑊(0,0) =
1

(2)
3
4

 |
𝛤(

1

4
)

𝛤(
3

4
)
|

1

2

                                                         (70) 

 

𝑑𝑊

𝑑𝑥
(𝑎, 0) = −

1

(2)
1
4

|
𝛤(

3

4
+

1

2
𝑖𝑎)

𝛤(
1

4
+

1

2
𝑖𝑎)

|

1

2

                                               (71) 

𝑑𝑊

𝑑𝑥
(𝑎, 0) = −

1

(2)
1
4

|
𝛤(

3

4
)

𝛤(
1

4
)
|

1

2

                                                    (72) 

 
Values of the parametric Nield-Kuznetsov functions and 
derivatives at 𝑥 = 0 are provided in Table 6, below. 
 

TABLE 6 
Parametric Nield-

Kuznetsov of first 

kind and 

derivative at zero 

Parametric Nield-

Kuznetsov of second 

kind and derivative at 

zero 
𝑁𝑤(𝑎, 0) = 0 𝐾𝑤(𝑎, 0) = 0 

𝑑𝑁𝑤

𝑑𝑥
(𝑎, 0) = 0 

𝑑𝐾𝑤

𝑑𝑥
(𝑎, 0) = −𝐹(0) 

 

 

4.4 Computations of the Parametric Nield-

Kuznetsov Functions 
    The following expressions, developed in [13-17], are used 
in the computations of the parabolic cylindrical functions 
𝑊(𝑎, 𝑥) and 𝑊(𝑎, −𝑥): 
 

𝑊(𝑎, 𝑥) = 𝑊(𝑎, 0) ∑ 𝜌𝑛(𝑎)
𝑥2𝑛

(2𝑛)!

∞
𝑛=0 +

𝑑𝑊

𝑑𝑥
(𝑎, 0) ∑ 𝛿𝑛(𝑎)

𝑥2𝑛+1

(2𝑛+1)!

∞
𝑛=0                                                (73) 

 
𝑊(𝑎, −𝑥) = 𝑊(𝑎, 0) ∑ 𝜌𝑛(𝑎)

𝑥2𝑛

(2𝑛)!

∞
𝑛=0 −

𝑑𝑊

𝑑𝑥
(𝑎, 0) ∑ 𝛿𝑛(𝑎)

𝑥2𝑛+1

(2𝑛+1)!

∞
𝑛=0                                                (74) 

 
𝑑

𝑑𝑥
𝑊(𝑎, 𝑥) = 𝑊(𝑎, 0) ∑ 𝜌𝑛(𝑎)

𝑥2𝑛−1

(2𝑛−1)!

∞
𝑛=0 +

𝑑𝑊

𝑑𝑥
(𝑎, 0) ∑ 𝛿𝑛(𝑎)

𝑥2𝑛

(2𝑛)!

∞
𝑛=0                                                    (75) 

 
𝑑

𝑑𝑥
𝑊(𝑎, −𝑥) = −𝑊(𝑎, 0) ∑ 𝜌𝑛(𝑎)

𝑥2𝑛−1

(2𝑛−1)!

∞
𝑛=0 +

𝑑𝑊

𝑑𝑥
(𝑎, 0) ∑ 𝛿𝑛(𝑎)

𝑥2𝑛

(2𝑛)!

∞
𝑛=0                                                    (76) 

 
    Using (73)-(76), Alzahrani et al [23, 28], developed the 
following series expressions for the parametric Nield-
Kuznitsov functions: 
 
𝑁𝑤(𝑎, 𝑥) =

2𝑊(𝑎, 0)
𝑑𝑊

𝑑𝑥
(𝑎, 0) [{∑ 𝛿𝑛(𝑎)∞

𝑛=0
𝑥2𝑛+1

(2𝑛+1)!
} {∑ 𝜌𝑛(𝑎)∞

𝑛=0
𝑥2𝑛+1

(2𝑛+1)!
} −

{∑ 𝜌𝑛(𝑎)
𝑥2𝑛

(2𝑛)!

∞
𝑛=0 } {∑ 𝛿𝑛(𝑎)∞

𝑛=0
𝑥2𝑛+2

(2𝑛+2)!
}]                            (77) 

 
𝐾𝑤(𝑎, 𝑥) =

2𝑊(𝑎, 0)
𝑑𝑊

𝑑𝑥
(𝑎, 0)[∑ 𝜌𝑛(𝑎)

𝑥2𝑛

(2𝑛)!
] ∫ 𝛿𝑛(𝑎)𝐹(𝑡)

𝑡2𝑛

(2𝑛)!
𝑑𝑡

𝑥

0
∞
𝑛=0                      

                                                                                          (78) 
where 
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𝜌𝑛+2 = 𝑎𝜌𝑛+1 −
1

2
(𝑛 + 1)(2𝑛 + 1)𝜌𝑛                               (79) 

𝛿𝑛+2 = 𝑎𝛿𝑛+1 −
1

2
(𝑛 + 1)(2𝑛 + 3)𝛿𝑛                               (80) 

𝜌0(𝑎) = 𝛿0(𝑎) = 1                                                             (81) 
𝜌1(𝑎) = 𝛿1(𝑎) = 𝑎                                                            (82) 

 
Sample calculations of 𝑁𝑤(𝑎, 𝑥)  and 𝐾𝑤(𝑎, 𝑥) using the 
(77)-(82) are shown in Tables 7, 8 and 9, below. 
 

TABLE 7 
𝒙 Some Values of 

𝑁𝑤(𝑎, 𝑥) 
 

𝑵𝒘(𝒂, 𝒙); 𝒂 = 𝟎 

Some Values of 
𝑁𝑤(𝑎, 𝑥) 

 

𝑵𝒘(𝒂, 𝒙); 𝒂 = 𝟏 

0 0 0 
0.1 -0.004999995827 -

0.005004163888 
0.2 -0.01999973332 -0.02006648827 
0.3 -0.04499696254 -0.04533545954 
0.4 -0.07998293445 -0.08105513505 
0.5 -0.1249349069 -0.1275598486 
0.6 -0.1798056698 -0.1852664744 
0.7 -0.2445101224 -0.2546639319 
0.8 -0.3189089751 -0.3362995397 
0.9 -0.4027896942 -0.4307617641 
1 -0.4958448910 -0.5386588510 

  
TABLE 8 

𝒙 𝑲𝒘(𝒂, 𝒙); 𝒂 = 𝟎 

𝐹(𝑥) = 𝑥2 

𝑲𝒘(𝒂, 𝒙); 𝒂 = 𝟏 

𝐹(𝑥) = 𝑥2 

0 0 0 
0.1 -0.0003333317456 -

0.0003360053955 
0.2 -0.002666463495 -0.002752690054 
0.3 -0.008996529010 -0.009659773517 
0.4 -0.02130733755 -0.02415201443 
0.5 -0.04154278194 -0.05041843662 
0.6 -0.07155657245 -0.09422931145 
0.7 -0.1130311074 -0.1635219131 
0.8 -0.1673594862 -0.2690996788 
0.9 -0.2354868836 -0.4254486950 
1 -0.3177111593 -0.6516586206 

 
TABLE 9 

y  𝑲𝒘(𝒂, 𝒙); 𝒂 = 𝟎 

𝐹(𝑥) = 𝑠𝑖𝑛𝑥 

𝑲𝒘(𝒂, 𝒙); 𝒂 = 𝟏 

𝐹(𝑥) = 𝑠𝑖𝑛𝑥 

0 0 0 
0.1 -0.004995813904 -0.005033369365 
0.2 -0.01993209438 -0.02053562388 
0.3 -0.04464846700 -0.04772579586 
0.4 -0.07885511745 -0.08867593176 
0.5 -0.1221006021 -0.1463657018 
0.6 -0.1737300984 -0.2247467511 
0.7 -0.2328376690 -0.3288039768 
0.8 -0.2982174230 -0.4645964625 
0.9 -0.3683198455 -0.6392561548 
1 -0.4412208948 -0.8609179616 

 

Further computations and solutions to initial and boundary 
value problems involving the six Nield-Kuznetsov functions 
have been carried out by Alzahrani et al [23, 28]. 

5. Conclusions 

In this work, we provided a complete overview of the recent 
developments and advances over the past decade of the three 
classes of the Nield-Kuznetsov functions. 
The Standard Nield-Kuznetsov functions of the first and 
second kinds arise due to the solution of Airy’s 
inhomogeneous ODE with constant and variable forcing 
functions, respectively. They are defined by equations (16) 
and (27), respectively, and their ascending series expressions 
are given by equations (31) and (32), respectively. 
The Generalized Nield-Kuznetsov functions of the first and 
second kinds arise due to the solution of generalized Airy’s 
inhomogeneous ODE with constant and variable forcing 
functions, respectively. They are defined by equations (53) 
and (54), respectively, and their series expressions are given 
by equations (31) and (32), respectively. 
The Parametric Nield-Kuznetsov functions of the first and 
second kinds arise due to the solution of Weber’s 
inhomogeneous ODE with constant and variable forcing 
functions, respectively. They are defined by equations (61) 
and (66), respectively, and their series expressions are given 
by equations (77) and (78), respectively. 
With this knowledge, one is now able to solve the 
inhomogeneous Airy’s ODE, inhomogeneous generalized 
Airy’s ODE and inhomogeneous Weber’s ODE that involve 
initial value problems and two-point boundary value 
problems. 
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