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Abstract—1In this article, we discuss a class of functions known as the Nield-Kuznetsov functions, introduced over
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of these functions are provided, together with their methods of computations.
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1. Introduction

Many interesting equations of mathematical physics have
their roots in the nineteenth century, and arose then due to
their various applications in physics. Their solutions have
been expressed in the forms of integral functions which gave
rise to various special functions that we know today.

Two examples of the said equations are Airy’s and
Weber’s differential equations. Both equations continue to
receive considerable attention in the literature (cf. [1, 2, 3, 4]
and the references therein) due to their various practical
applications and theoretical implications. In addition to its
direct applicability in the study of optics, fluid flow and
electromagnetism, many other differential equations in
mathematical physics can be reduced to Airy’s or Weber’s
equations by an appropriate change of variables.

Their theoretical implications are found in the introduction
of other functions in seeking their solutions, and infinite
series analysis of their solutions and the functions that are
expressible in terms of Airy’s functions and Weber’s
functions (cf. [3, 6, 7] and the references therein). In addition,
these functions contribute to the creation of knowledge in
their extensions to large arguments and complex domains of
validity, [8], and generalizations of these functions whenever
possible and necessary, [9].

Computationally, Airy’s, Weber’s, and other related
special functions continue to represent a challenge and give
rise to the need for efficient computational algorithms, (cf.
[10, 11, 12] and the references therein). In fact, a large
number of scientists have devoted the better parts of their
careers to provide us with the State-of-the-Art computational
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methodologies of these special functions (cf. [13, 14, 15, 16,
17] and the references therein).

Although Airy’s and Weber’s equations started out in their
homogeneous forms, it is now evident that many applications
require these equations in their more general, inhomogeneous
forms with forcing functions that can be either constant of
variable. For instance, Airy’s inhomogeneous equation
proved to be a valuable tool in the analysis of flow over
porous layers in the presence of a transition layer, wherein
Nield and Kuznetsov [18] showed that Brinkman’s equation,
which governs the flow in the variable permeability transition
layer, can be reduced to Airy’s equation. Abu Zaytoon et.al.
[19, 20] provided models of variable permeability porous
layers that resulted in reducing the governing equations to the
generalized Airy’s equation and Weber’s equation.

Applications of the inhomogeneous Airy’s and Weber’s
equations underscore the fundamental importance of solving
their initial and boundary value problems, and providing the
necessary computational methodologies to evaluate their
integral functions. To this end, Nield and Kuznetsov [18]
found it convenient to define a new integral function in terms
of Airy’s functions and their integrals. This provided a
methodology of handling the inhomogeneous Airy’s equation
with a constant forcing function.

Properties of this newly-introduced integral function have
been studied by Hamdan and Kamel, [21] and [22], who also
introduced an integral function to express the particular
solution of Airy’s inhomogeneous equation with a variable
forcing function. Integral functions suitable for expressing
particular solutions of the generalized Airy’s equation and the
generalized Weber’s equation were introduced by Abu
Zaytoon et.al. [19], [20], and Alzahrani et.al. [23], and
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analyzed extensively by the same authors (cf. [24, 25, 6, 27,
28, 29, 30, 31]).

The current work stems from our belief that knowledge of
the equations of mathematical physics, and their associated
solutions in the forms of integral and special functions, is an
important aspect of modern research. These functions
represent our mathematical treasure, and their computations
are an integral part of our methodologies to expand this
knowledge.

While we feel this is just the tip of the iceberg when it
comes to advancing knowledge from homogeneous to
inhomogeneous equations, and that there are many other
equations to consider, our goal here is to provide this most up
to date and comprehensive knowledge of six functions that
have been developed over the past decade. Three classes of
the Nield-Kuznetsov functions are considered (the Standard,
the Generalized, and the Parametric Nield-Kuznetsov
functions), each of which is of two kinds: the first and second
kinds. They cover the two cases of inhomogeneities: a
constant forcing function (Nield-Kuznetsov functions of the
first kind) and variable forcing functions (Nield-Kuznetsov
functions of the second kind).

In this work, we provide details of their derivations, and
their ascending series representations that are suitable for
efficient computations. Some sample computations are
provided for illustration.

2. The Standard Nield-kuznetsov
Functions

2.1 Initial VValue Problem
Consider the inhomogeneous Airy’s ordinary differential
equation (ODE):

d?y _

L3 —xy = f(x) (1
subject to the initial conditions

y(0) =a 2
dy _

0)=p (3)

where a and f§ are known values.

Solutions to (1) depend on the forcing, f(x), which gives
rise to the following four cases.

2.2 The Case of f(x) = 0.

In this case, general solution to (1) is given by

y = a;4;(x) + a;B;(x) 4

where a, and a, are arbitrary constants, and the functions

A;(x) and B;(x) are two linearly independent functions
known as Airy’s homogeneous functions of the first and
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second kind, respectively, and are defined by the following
integrals, [4]:

A;(x) = %fooo cos (xt + ?) dt ®)

3

B;(x) = %fooo [sin (xt + ?) + exp (xt - %)]dt (6)

The non-zero Wronskian of 4;(x) and B;(x) is given by, [4]:

a5 dAi(x) _ 1
W (4;(x), Bi(2)) = 4;(x) L2 — By (x) L2 =

s

(7

Solution (4) satisfying the initial conditions (2) and (3)
takes the form
} B;(x)

(®)

a

()

1
(3)6a
y=m {—1 -

F(g) %}Ai(x) + T[{

@er(3) @r(3)

where I'(.) is the Gamma function.

2.3 The Case of f(x) = ii.

In these cases, general solution is given by a linear
combination of Airy’s functions and Scorer functions, [4],
[6], as follows.

For f(x) = — %, general solution of (1) is given by

y = biA;(x) + by Bi(x) + G;(x) )
where b, and b, are arbitrary constants, and

1 poo t3
G;(x) =;f0 sin (xt+;) dt (10)

Solution to the initial value problem (1), (2), (3), in this
case takes the form

1
(O
y=n [ 26

3

B B
1

}Ai(x) + 7'[{ 1 +—
o) () | )

a

;@@Pﬂﬂﬁﬂ) (1n
For f(x) = %, general solution of (1) is given by

y = ¢ A;i(x) + ¢;B;(x) + H;(x) (12)

where ¢; and c, are arbitrary constants, and

H;(x) = %fom exp (xt—g) dt (13)

Solution to the initial value problem (1), (2), (3), in this
case takes the form
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-l
r(3) (3)61"(2)

——t B0 +H,
e

B
2
@)

y A()+{

()

(14)

In applying the initial conditions (2) and (3) to obtain
values of the arbitrary constants, we relied on values of the
integral functions A;(x), B;(x), G;(x), H;(x) and their first
derivatives at x = 0, reported in [4]. These values are listed
Tables 1(a) and 1(b), below.

TABLE 1(a)
Values of Airy’s and Scorer functions
atx=20
A(O)_x/—(;(O)_L
@r)
B(O)—3G(0)—;
@sr)
6.(0) = A4;(0) 1
B @ard
2B;(0) 2
HL(O) = 3 = 7 2
(3)er(3)
TABLE 1(b)

Values of the first derivatives of
Airy’s and Scorer functions at x = 0

dA,(0 dG;(0 -3
= At
(3)rx)
dB(0) _ ,dG(©) _ 3
dx dx (3)6[‘(3)
dG;(0) _ 1dA0 _ 1
b V3 oA
dH(0) _2dB,(0) _ 2
dx 3 dx (3)%”%)
2. 4 The Case of f(x) = R = constant

In Case 2, above, the Scorer functions furnish the particular
solution to inhomogeneous Airy’s ODE for the special values

f()
of X, the Scorer functions do not directly render the needed
particular solution.

=7F % If f(x) = R is any constant or variable function

When f(x) =R, a particular solution to ODE (1) is
obtained using the method of variation of parameters to
obtain the following general solution:

y = dyA;(x) + dyBi(x) — RN (x) (15)
where d; and d, are arbitrary constants, and
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Ni(x) = 4,(x) f; Bi(©)de — Bi(x) f; A(D)de (16)

The integral function N;(x) is called the Standard Nield-
Kuznetsov Function of the First Kind. Nield and Kuznetsov,
[18], introduced (16) in their study of the effect of transition
layer in the flow over porous layers. Hamdan and Kamel [21]
established the following relationships of N;(x) to Airy’s and
Scorer’s functions:

Ny(x) = Gy(x) = By(x) (17)
Ni(x) = 2B;(x) — Hy(x) (18)
Ni(x) = 26, () — S Hi (%) (18)

Using (10), (13) and (19), we obtain the following integral
representation of N;(x):

N;(x) = ifooo sin (xt +§t3) dt — ifooo exp (xt -

23) at (20)
First and second derivatives of N;(x) are given by

) - 2 X By (0)de - T2 [F A (e e

TN — W (4,00, Bi () =2 (22)

Equations (16) and (21) together with Tables 1(a) and 1(b),
provide the following values at x = 0:

dn;(0)
dx

N;(0) = =0 (23)

which are needed to evaluate the arbitrary constants, d; and
d,, and write the solution to the initial value problem, (1), (2),
(3), with f(x) = R, as

a [F(E) (3)61"(2)}

]B (x) — mRN;(x)

A;(0) + ] —
i(x) ﬂ{(3)3r()

24
= n (24)

Remark 1.

We remark at the outset that in solving the initial value
problem (1), (2), (3), and expressing the solution in terms of
N;(x), values of the arbitrary constants are independent of the
forcing function. To illustrate this point further, when

_1 . _— o
f (X) =F —, solution to the initial value problem is simply
V4

1
given by equation (24) with R = ¥ — , while coefficients of
Vi

Airy’s functions (values of the arbitrary constants) in the
solution do not change. By comparison, when the general
solution is expressed in terms of Scorer functions, G;(x) and
H; (x), coefficients of Airy’s functions do in fact change.

2.5 The Case of f(x) Being General Function of
X

Volume 20, 2021



WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2021.20.20

When the forcing function is a general function of x,
particular solution of (1) can be obtained using variations of
parameters as 7wK;(x) —mf(x)N;(x) , and the general
solution to (1) thus takes the form
y = e14;(x) + e;B;(x) + nK;(x) — mf (x)N;(x) (25)
where e; and e, are arbitrary constants, and the function

K;(x), referred to as the Standard Nield-Kuznetsov Function
of the Second Kind, takes the form

Ki(0) = 4,0 [} {J Bi@dr} f()at -

B,(0) [ {J i@t} £/ (0)dt (26)
wherein f’ denotes the derivative of f with respect to its
argument.

Equation (26) can be written in the following form in order
to establish the connection between Ki(x) and Ni(x)

K;(x) = fFON; () — {A; ) [ f (OB (1) dt —
B;(x) [] f(D)A; (1) dt} 27)

The following first derivative of Ki(x) is obtained from
27):

dK;(x) dNi(x)

= f'CIN;(x) + f(x)— =
(540 15 0y 0 e - 59D [ ey )
(28)
Equations (23), (27) and (28) furnish the values for
K;(0) and dL(O):

aKi(0) _
dx

K;(0) = =0 (29)

Using conditions (2) and (3), we verify that the values of
arbitrary constants e; and e, are the same as d; and d,,
respectively, and the solution to the initial value problem (1),

(2) and (3), when f (x) is a variable function of x, is given by

=7 (3%‘1 T
y= {F(_) e )}A( x) + {(3)3r()+

}B (x) + K;(x) — tf (x)N;(x)

30
= (30)

Remark 2.

The function N;(x), defined in equation (16), is referred to
as the Standard Nield-Kuznetsov Function of the First Kind.
Particular solution to the inhomogeneous Airy’s ODE with a
constant forcing function is expressed in terms of N;(x). This
function was introduced by Nield and Kuznetsov, [18]. Its
extensive properties and relationship to other functions, such
as Bessel functions, were studied in details and established in
the work of Hamdan and Kamel, [21].
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The function K;(x), defined in equation (27), is referred to
as the Standard Nield-Kuznetsov Function of the Second
Kind. Particular solution to the inhomogeneous Airy’s ODE
with a variable forcing function is expressed in terms of
K;(x). This function was introduced by Hamdan and Kamel,
[21].

2.6 Computations of the Standard Nield-

Kuznetsov Functions

The standard Nield-Kuznetsov functions of the first and
second kinds can be evaluated using asymptotic or ascending
series (cf. [4, 18, 19, 20, 22, 26, 27]. Ascending series
expressions are shown below, [26, 27]:

Ni(x) =
k3K ky3k+2
2\/§a1a2 [{ZI?:O ( )k 3(3k)' } {Zk 0 ( )k 3(3k+2)'} -

(20 (), T} (280 6), G|
Ki(x) =

2300, (520 (2) 2 5 (2), [P0 2 -
() hrossHem @) o)l o

[oe]

k=0

€2))

where

a; = A4;(0) = 0.3550280538878172

a; = —2 4,(0) ~ 0.2588194037928067
dx
() = “F”(;‘)_b(b+1)(b+2) (b+k—1)k>0

is the Pochhammer symbol, [7], where (b), = 1.

Extensive tabulations have been carried out by Alzahrani
et.al. [28, 29, 30, 31]. In Tables 2(a) and 2(b), below, are
some values of K;(x) and N;(x) at selected values of x.
Results were obtained using ascending series truncated after
10 terms.

TABLE 2(a)
F(x] K;(x=10.1) K;(x =0.5) Ki(x=1)
x | —0.0015916290 —0.040037971| —0.167256091
x% | —0.0001061068 —0.013318270{ —0.109689567
sinx —0.0015903031] —0.039213457| —0.154114269
e* | —0.0334796769 —0.208436781| —0.584378919
TABLE 2(b)
Ni(x=0.1) N;(x =0.5) Ni(x=1)
—0.001591629009 —0.04003797119 — 0.1672560919

3. The Generalized Nield-kuznetsov
Functions

3.1 Solution to the Homogeneous Generalized
Airy’s Equation
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Consider the generalized inhomogeneous Airy’s ODE of
the form:

—x"y =f(x) (33)

dx2

In their elegant analysis, Swanson and Headley, [9],
provided solution to the homogeneous part of (33) as a linear
combination of the linearly independent functions 4,,(x), and
B,,(x), referred to as the generalized Airy’s functions of the
first and second kinds, respectively, namely:

Y = a;4,(x) + a;B, (x) (34)
where a, and a, are arbitrary constants and

An (%) = Zsin(pm) (1) /2K, ({) (39)
Bu(x) = (00)2(1_p(©) + Q) (36)

The terms I, and K, are the modified Bessel functions
defined as:

L . o 1 ¢
L) =L = St @ 37
Tl’(l—p(() ()

Kp(§) = St (38)

withp = nl?, ¢ = 2px, and I'(.) is the gamma function.
The Wronskian of A4,,(x) and B,,(x) is given by:

W (4, (), By () = 2p7 sin(pm) (39)

and the first derivatives of the generalized Airy’s functions
are given by, [9]:

dAn(x) _

dx
dBn %)

—2—”sin(pn) @)% Kyt (0)
pz(x) 2 [11 p(c) +1p 1(()]

(40)
(41)

Swanson and Headley [9] extensively studied properties of
the generalized Airy’s functions, A, (x), and B, (x), and their
connections to other functions, such as Bessel functions.

In their modelling of flow through variable permeability
porous layers, Abu Zaytoon et.al., [19], showed that the flow
equations could be reduced to the inhomogeneous Airy’s
ODE (33). In order to obtain solutions to initial value
problems or boundary value problems, they solved (33) using
variations of parameters and obtained the following cases of
solutions.

3.2 The Case of Constant Forcing Function

When f(x) = R = constant, Abu Zaytoon et.al., [19],
showed that the general solution to (33) takes the form
Yn = b1An(x) + byBy(x) — m Ny, (x) (42)
where b, and b, are arbitrary constants, and
E-ISSN: 2224-2678
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Ny (x) = Ay (x) [, By (8)dt — B, (x) [ Ay (£)dt (43)
with first derivative given by

dNp (x) dAn(x) dBn(x)

— = f B, (t)dt — f A, (H)dt (44)
Remark 3.

Integral function (43) is termed the Generalized Nield-
Kuznetsov Function of the First Kind, as introduced by Abu
Zaytoon et.al. [19]. Clearly, when n=1, this function reduces
to the Standard Nield-Kuznetsov Function of the First Kind,
equation (16).

3.3 The Case of Variable Forcing Function
When the forcing function, f(x), is a variable function of
x, solution to (33) takes the form, [29]:

Yo = €1 An () + 2By () = 5= Ky (1) (45)
where ¢; and c, are arbitrary constants, and
dAn(t) dBn(t)
Ky (x) = By(x) J, F(2) dt — An(x) 5 F(©)
(46)

The function K, (x) is referred to as the Generalized Nield-
Kuznetsov Function of the Second Kind. Its first derivative is
given by, [29]:
dKn(x) _ dBp(x) rx dAn(t) _

dx dx fo F(©) dt dt

dAn(x) rx dBp(t) _Zﬁsin(pn)
= Jo F® dt ——F(x)

(47)
wherein F' = f.

A. Computations of the Standard Nield-Kuznetsov
Functions

Following Swanson and Headley, [9], the generalized
Airy’s functions are evaluated as follows.

Letp = ﬁ and

_ P _ P
" r@a-p) d o= I(p) (48)
(n+2)k
— © 2k 17k X
In1(x) =1+ X5 p** [1= =) (49)
(n+2)k
— © 2k 17k X
In2(X) =1+ 3 p I=15G=p) (50)
then
An(x) = ‘annl(x) - Bngnz(x) (51)
Bn(x) = W [angnl(x) + ﬂngnz(x)] (52)
The generalized Nield-Kuznetsov functions can be

evaluated using (41)-(44) and the following expressions, [19,
29, 30, 31]
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N () = = anB{gn1 (0 Jy na ()t ~

Gn2 () [§ gna (B)dt} (53)
Kn(®) = 2 @ {9 (0) [ F(O) 5 gma(©)elt —
In2() [§ F(6) 5 g ()t} (54)

Upon evaluating (51), (52), (43), (44), (46), and (47) at
x = 0, we obtain the following values in Table 3..

TABLE 3
Values of Generalized Airy’s
and Nield-Kuznetsov Functions,
and Derivatives at Zero
®'?
A =—
(0) I /_p)
((ORS
B,(0) = ————
7 (0) )
ZRONNOR
dx I'(p)
dB,(0) _ ()P~ /?
d«_ T(p)
N,(0)=0
dN,,(0)
=0
dx
K,(0)=0
dK, (0) 2./p sin(pm)
=— F(0
dx yiA ©
Computations of the generalized Nield-Kuznetsov

functions, using (53) and (54), have been carried out and
tabulated by Alzahrani et.al. [30], for n=1,2,...,10. It is worth
noting that (54) reduces to (53) when F(x) = x, and x = 1,
as verified by values of N, (1) and K,,(1) in Tables 4 and 5
below.

TABLE 4
Values of N,,(1) forn =
1,2,3,4,5,and 10

N;(1) = — 0.1671679498
N,(1) = — 0.1163218192
N;(1) = — 0.08567790804
N,(1) = — 0.06614082173
Ns(1) = — 0.05292832891
N;o(1) = —0.02391327336

TABLE 5
Values F(x) =x F(x) = x?
of K,,(1)
K, (1) F(x) =x F(x) = x?
K;(1) —0.1671679498 —0.1095475388
K,(1) —0.1163218194 | —0.07681056585
K;(1) —0.08567790816 | —0.05678057772
K, (1) —0.06614082166 | —0.04391997436
Ks(1) —0.05292832894 | —0.03518808431
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| Ki(1) | —0.02391327336 | —0.01593053627 |

4. The Parametric Nield-kuznetsov
Functions

A. 4.1 Weber’s Homogeneous Equation

Weber’s inhomogeneous differential equation finds
applications in the study of fluid flow through porous layers
with variable permeability, [20]. Weber’s homogeneous
equation takes the form

dz—y+(ax2+bx+c) =0 (55)
dx? Y

where a,b,C are constants and the independent variable, x,
is in general complex.

However, it has been reported in the literature in other
forms, (cf. [1, 2, 3]) that include three distinctive forms whose
mathematical and physical applications have been discussed
in the work of Temme, [2]. Of interest, due to its validity in
the real domain and its usefulness in modelling practical
situations in the real plain, is Weber’s equation of the form

(F-a)y=0

Equation (56) possesses the solutions W (a,¥X), where

dzy
—+

dx?

(56)

the variable x and the parameter a are real numbers. These
solutions represent a linearly independent, numerically
satisfactory pair of solutions, [2], for all X €& R, with the
Wronskian given by

w(W (a, x) ,W(a,—x))=1. (57)

Abu Zaytoon et.al. [20] encountered applications in the
study of flow through porous layers, of the inhomogeneous
Weber’s equation, namely:

+(E-a)y =7

d?y

dx?

(58

and showed that a particular solution is given by

Yo = W(a,—x) f; f(OW (a,t)dt —

W(a,x) [, f(OW(a,—t)dt (59)

The following two cases arise, depending on f (x).

4.2 The Case of f(x) = R = constant
If f(x) = R, then

Yp = R{W (a, —x) [ f(£)W (a, t)dt —

W(a,x) [, f(OOW (a,—t)dt} (60)

In equation (60), the expression in brackets is termed the
Parametric Nield-Kuznetsov Function of the First Kind,
which depends on parameter a, and is denoted and given by
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N, (a,x) = W(a,x) f, W(a,—t)dt —

W (a,—x) [; W(a, t)dt 61)

with a first derivative given by

dNy(ax) _ dW(ax) rx _ aw(a,—x) rx
= — Jy W(a,—t)dt + — Jo W(a,t)at
(62)
General solution to (58) can thus be written as:
y=cW(a,x)+c,W(a,—x) — RN, (a,x) (63)

where ¢; and c, are arbitrary constants.

4.3 The Case of f(x) Being a Variable Function

of x
If f(x) is a variable function of x, then

=W(a,—x) [; F(OW(a,t)dt —

W (a,x) f, F'()W(a,—t)dt (64)

where F'(t) = f(t).

Using integration by parts, equation (64) can be written as:

aw (a,t) dt +

=—(W(a,—x) [JF(t)

W(a x) [ F@©) e 4y (65)

The expression on the right-hand-side of (53) depends on
parameter a, and is reminiscent of the Nield-Kuznetsov
function of the second kind. It is referred to as the Parametric
Nield-Kuznetsov Function of the Second Kind, denoted by
K, (a, x), and defined as:

dt +

K, (a,x) = W(a,—x) [} F(t)
W(ax) [ F(@) e at

aw(a,t)
t

(66)

with first derivative given by

de(a X) dW(a t)

dt —

dW(a x)f F(t)

dW(a X)f F(f) dW(a t) dt — F(x)

(67)
General solution to (58) can thus be written as:

y=d,W(a,x)+d,W(a,—x) — K, (a,x) (68)

where d; and d, are arbitrary constants.

In solving initial and boundary value problems involving
the Weber ODE, one requires values of the parametric Nield-
Kuznetsov ﬁmctions at given values of the argument. Values

atx=0of W(a, x) (a x) are given by, [14, 15, 17]:

F(mm) ’

r(G+zia)

W(a,0) = —5
@

(69)
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1
2

W (0,0) = (2% 8 (70)
% (0,0 = - a
aw, QP

@ @0 =4[ 2

Values of the parametric Nield-Kuznetsov functions and
derivatives at x = 0 are provided in Table 6, below.

TABLE 6
Parametric Nield- Parametric Nield-
Kuznetsov of first Kuznetsov of second
kind and kind and derivative at

derivative at zero ZEero

N, (a,0) =0 K,(a,0)=0

il 0)=0 aky, 0 F(0
dx(a.)— dx(a,)— 0)

4.4 Computations of the Parametric Nield-

Kuznetsov Functions

The following expressions, developed in [13-17], are used
in the computations of the parabolic cylindrical functions
W(a,x) and W(a, —x):

W(a,x) = W(a,0) Zn opn(a)

(2n)'

_(a 0) Yoo 6n (a) @D (73)
W(a —X) W(a O) Zn Opn(a) (2n)! -

2 (@,0) T 8n(@) s (74)
_W(a x) =W(a,0) Zn Opn(a) 2n-1)!

E = (a,0) X520 6, () m (75)
W (@) = W (@O Do pn @ 5

—(a 0) X0 (@) = (76)

(2n)!

Using (73)-(76), Alzahrani et al [23, 28], developed the
following series expressions for the parametric Nield-
Kuznitsov functions:

N, (a,x) =
2W (a, O)_(a 0) [{Zn 00n(a) (2n+1)}{2n 0Pn(a )(2n+1)
{Zn Opn(a) (2n )I} {Zn 06 (a) (21211-:4—22)'}] (77)
K,(a,x) =
2W (0,0 2% (a, 0)[ S0 pn (@) ] [ 8,(@)F (1) o dit

(78)
where
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Puvz = apny1 = (n+ D@0+ Dpy (79)
Suz = @By =5 (M + D@1 +3)3, (80)
po(a) = 8p(a) =1 (81)
pi(@) =6,(a) =a (82)

Sample calculations of N, (a,x) and K, (a,x) using the
(77)-(82) are shown in Tables 7, 8 and 9, below.

TABLE 7
X Some Values of Some Values of
Ny, (a,x) Ny (a, x)
N,(a,x);a=0 N,(a,x);a=1
0 0 0
0.1 -0.004999995827 -
0.005004163888
0.2 -0.01999973332 -0.02006648827
0.3 -0.04499696254 -0.04533545954
0.4 -0.07998293445 -0.08105513505
0.5 -0.1249349069 -0.1275598486
0.6 -0.1798056698 -0.1852664744
0.7 -0.2445101224 -0.2546639319
0.8 -0.3189089751 -0.3362995397
0.9 -0.4027896942 -0.4307617641
1 -0.4958448910 -0.5386588510
TABLE 8
x K,(a,x);a=0 K,(a,x);a=1
F(x) = x? F(x) = x?
0 0 0
0.1 -0.0003333317456 -
0.0003360053955
0.2 -0.002666463495 -0.002752690054
0.3 -0.008996529010 -0.009659773517
04 -0.02130733755 -0.02415201443
0.5 -0.04154278194 -0.05041843662
0.6 -0.07155657245 -0.09422931145
0.7 -0.1130311074 -0.1635219131
0.8 -0.1673594862 -0.2690996788
0.9 -0.2354868836 -0.4254486950
1 -0.3177111593 -0.6516586206
TABLE 9
y K,(a,x);a=0 K,(a,x);a=1
F(x) = sinx F(x) = sinx
0 0 0
0.1 -0.004995813904 -0.005033369365
0.2 -0.01993209438 -0.02053562388
0.3 -0.04464846700 -0.04772579586
04 -0.07885511745 -0.08867593176
0.5 -0.1221006021 -0.1463657018
0.6 -0.1737300984 -0.2247467511
0.7 -0.2328376690 -0.3288039768
0.8 -0.2982174230 -0.4645964625
0.9 -0.3683198455 -0.6392561548
1 -0.4412208948 -0.8609179616
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Further computations and solutions to initial and boundary
value problems involving the six Nield-Kuznetsov functions
have been carried out by Alzahrani et al [23, 28].

5. Conclusions

In this work, we provided a complete overview of the recent
developments and advances over the past decade of the three
classes of the Nield-Kuznetsov functions.

The Standard Nield-Kuznetsov functions of the first and
second kinds arise due to the solution of Airy’s
inhomogeneous ODE with constant and variable forcing
functions, respectively. They are defined by equations (16)
and (27), respectively, and their ascending series expressions
are given by equations (31) and (32), respectively.

The Generalized Nield-Kuznetsov functions of the first and
second kinds arise due to the solution of generalized Airy’s
inhomogeneous ODE with constant and variable forcing
functions, respectively. They are defined by equations (53)
and (54), respectively, and their series expressions are given
by equations (31) and (32), respectively.

The Parametric Nield-Kuznetsov functions of the first and
second kinds arise due to the solution of Weber’s
inhomogeneous ODE with constant and variable forcing
functions, respectively. They are defined by equations (61)
and (66), respectively, and their series expressions are given
by equations (77) and (78), respectively.

With this knowledge, one is now able to solve the
inhomogeneous Airy’s ODE, inhomogeneous generalized
Airy’s ODE and inhomogeneous Weber’s ODE that involve
initial value problems and two-point boundary value

problems.
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