

Application of Systems Theory in the Design of System Monitoring

Service of Hardware-Software Complex

NATALIA MAMEDOVAa, TIMOFEY BOLONIN

Basic Department of Digital Economy,
Plekhanov Russian University of Economics,

36, Stremyanny Lane, Moscow, 117997,
RUSSIA

aORCiD: 0000-0002-8934-7363

Abstract: - In this paper, we propose a solution for applying the principles of structural analysis of systems
to the design of a monitoring system for a hardware-software warehouse management complex. Taking into
account the theoretical and methodological basis of systems theory for the choice of architectural solutions
for systems engineering research and in the design of information systems is a non-trivial approach to design
because it goes against the established practice of functional design within the boundaries of the market
conjuncture of hardware and software architecture means. It is proposed to consider the principles of
systems theory application as an approach to science-based information system design through the
relationship between systems theory and system monitoring. The study consistently implements the
approach to the design of the monitoring system of the hardware-software complex of warehouse
management based on the principles of structural analysis of systems. The approach was applied iteratively
to all components of the designed system and in describing the order of their interaction in order to find an
efficient and resource-saving architectural solution. This allowed me to design the architecture of the system
monitoring service. The principles of structural analysis of systems are shown in describing the functionality
of the service, implemented for the internal logic of the server. The process and results of this study
represent a positive practice of an orderly and informed approach to designing IT solutions without the
prevalence of random or opportunistic factors characterizing the external environment of the design process.

Key-Words: - Systems theory, principles of structural analysis of systems, system monitoring, hardware-

software complex, IT solution design methodology, system architecture.

Received: May 27, 2024. Revised: November 9, 2024. Accepted: March 7, 2025. Published: May 6, 2025.

1 Introduction
Different types of system theories are integrated into
systems science, which includes general systems
theory, branch and special systems theories, and
systems engineering, [1]. Systems theory is a
transdisciplinary field of knowledge that investigates
the general principles and patterns that govern
systems in different domains. Following, [2] we
believe it is correct to apply to systems theory the
category of ‘transdisciplinarity’, which goes beyond
the meanings of multidisciplinarity and
interdisciplinarity. At the same time, we consider it
important to point out that the use of systems theory
is possible not only as a philosophy of relations
between monodisciplines, [3].

If it is used as an instrumental framework for the
development of future-oriented IT solutions, it is
appropriate to consider systems theory in the context
of the category of ‘interdisciplinarity’ because there

is a casual establishment of relationships between
monodisciplines without feedback loops, [4]. And
only when a promising IT solution is transformed
into a projected IT solution based on systems
engineering, it is expressed through transdisciplinary
relations between mono-disciplines as part of the
branch systems theory.

There are many examples of the application of
systems theory to material objects, and it is on these
examples that the general theory of systems was
formed by its founders, including von Bertalanffy,
Weinberg, and Miller. Their studies form the basis
of the general theory of systems, [5], [6], [7]. The
principles of systems theory application valid for
intangible objects were proposed by Jordon, [8]. He
labeled them as principles of structural analysis of
systems, and their application opened up new
avenues for systems engineering research, [9]
including in the field of information systems design.

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.25 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-2678 288 Volume 24, 2025

Systems research developing these principles has
predominantly focused on creating useful and usable
approaches to comparing and interconnecting
domains, thus creating an interdisciplinary approach
for describing and analyzing large and even complex
systems, [10].

In this study, the principles of structural analysis
are applied to the design of the service of system
monitoring of the hardware and software complex of
warehouse management in the example of a
multimodal transport and logistics center. At the
same time, it is suggested to consider this study as a
general approach to design without focusing on the
applied tasks of integrating the development result
in warehouse logistics organizations.

From an organizational point of view, following,
[11] project activity is seen as the material of
organizational experience over a structurally stable
system. Classifying the designed system in
accordance with the regularities described in [11],
we note that it functions on the basis of formative
regularities that lead to the transition of the system
to another quality. In addition, the designed system
is in the state of complexion, because at this stage it
is a purely mechanical union of elements, between
which the processes of interaction have not yet
begun. Completion of design and transition to
software implementation will mean the transition to
the conjugation stage.

Speaking in terms of the monitoring system
design, the transdisciplinarity of systems theory
application to it is manifested in the description of
hardware and software parts of the complex as
interrelated abstractions. Another manifestation is
the establishment of the rules of system monitoring
and interaction of the described abstractions within
the boundaries of the general concept of the system
boundary of the system boundary of the system
theory, [12]. This is the basis for understanding how
the components of the monitoring system interact
according to the principles described in the [8], and
to represent a hardware and software system as a
complex system.

The management of complex systems is
considered a related field of knowledge, for which
systems theory provides the tools of analysis to
understand complex systems, allowing the study of
their structure, dynamics, and interactions in the
context of broad scientific and practical problems.

The concept of a complex system algorithm is
presented in the studies of [13], [14], [15].
Generalization of their materials and conclusions
allowed us to reasonably call the hardware-software
complex a complex system. This is also true in the
aspect that the hardware-software complex

combines software and hardware parts and
constitutes an integral complex of hardware and
software. Thus, in this study under the complex
system, it is proposed to consider the hardware-
software complex, which in the applied aspect
functions in the form of access control systems,
database systems, technological industry equipment,
and complexes for production automation, [16],
[17], [18], [19].

Like any automation product (whether it is an
automatic or automated system), the hardware and
software complex needs monitoring. This function is
performed by system monitoring services. From the
position of their place in the IT architecture, system
monitoring services are IT systems that collect,
process, store, and display information about the
state of objects.

Traditionally, monitoring is conducted over the
processes of object functioning in real-time. This
implies the direct involvement of the operator to
assess monitoring results and control monitoring
events. However, promising solutions in the
development of monitoring systems should go
beyond this, offering the user solutions that will
provide both remote monitoring and prediction of
events in the behavior of the object and the
environment external to the monitored object. These
systems may not be fully realized or widely used,
but their potential makes them important for future
technology development.

The following artifacts of transdisciplinarity for
the application of systems theory were identified in
the ongoing research. From general systems theory,
the inherited artifact was the systems approach.
Since the research is aimed at finding the best IT
solution, technical systems were selected among the
artifacts of the branch systems theories. This
conditioned the choice of the special systems
theories artifact, as it could be the one that specifies
the branch systems theory. The artifact was the
principles of structural analysis of systems. Finally,
systems engineering, as the most applied branch of
systems theory, has an explicit material
embodiment. The methodology of system
monitoring has become an artifact.

The main objective of the study is to design a
monitoring system that ensures the stability,
availability, and performance of the warehouse
management hardware and software system. The
application of the systems approach in accordance
with the systems theory for design means the
development of a solution that implements the stated
functionality in full, ensures the optimization of
resources for design, ensures quality by applying the
principles of structural analysis of systems to select

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.25 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-2678 289 Volume 24, 2025

the architecture of the system monitoring service.
The subject area of the study covers approaches to
designing systems, in this case, a monitoring system,
based on the concept of systems theory, applying its
principles and practices to justify the architectural
solution.

2 Relationship between Systems

 Theory and System Monitoring
System monitoring occupies an important place
within systems theory as it is a methodology and
practice aimed at observing, analyzing and
managing complex systems. This enables the
identification of problems, the optimization of
processes, and the effective functioning of systems
in various domains. We emphasize the significance
of the relationship between systems theory and
systems monitoring in fields such as economics,
logistics, information technology, and management.

As already mentioned, systems theory provides
tools to understand complex systems. It is suggested
that system monitoring is an effective tool for
managing a complex system as a holistic object and
for observing the environment of complex systems.
Let us provide a justification for this assertion.
According to the studies of scientists who have
made a significant contribution to the development
of systems theory, [1], [5], [6], [7], [8] in general
terms, the system has the following characteristics -
integrity, harmony, variability, and efficiency.
Correlating the characteristics of the system with the
characteristics of system monitoring, it should be
noted the following.

System monitoring covers not only the
individual components of the system but also the
relationship between the components and their
interaction with the external environment. In the
context of general systems theory, this characteristic
is identified as integrity and is investigated through
the application of a systems approach.

System monitoring provides information for
feedback, which is a key element in the management
of dynamic systems. It ensures the harmony of the
system and becomes the starting point for
maintaining a balanced state of the system and
defining the limits of its adaptability to changes in
the external environment.

System monitoring provides data on the basis of
which informed decisions can be made to adjust
management processes. The resulting changes are
possible due to the characterization of the variability
of systems, while the assessment and direction of
such changes are outside the scope of the variability

characterization, as they relate to the
characterization of the effectiveness of systems.

System monitoring provides a collection of data
on the state of the system and its components, which
enables performance analysis and identification of
deviations from the parameters of effective
functioning. The purpose of system monitoring
services is to ensure the effective functioning of the
system as a whole (system components, links
between components), as well as effective
management of system changes, and collection and
processing of feedback. This suggests that the
efficiency characteristic is the cornerstone of the list
and describes the target state of the system as a
whole.

The presented content of system monitoring in
the relationship with the properties of systems can
be called abstract, because it appeals to the
provisions of the theory of systems about the
universal regularities of structural transformation of
systems, [11]. At the same time, a certain level of
abstraction is inevitable because system monitoring
inherits the principles of control in biological and
technical systems, [20], Being a technical tool,
designed by a human being and operated by a
human being.

And yet, if we try to specify the mechanism of
manifestation of system characteristics from the
point of view of systems theory through the
functions of system monitoring, we can identify the
following dependencies.

In information technology, system monitoring is
used for continuous observation of the state of
servers, networks, and applications. Monitoring of
servers and networks allows for rapid identification
and troubleshooting of problems, ensuring stable
operation of the IT infrastructure. System
monitoring involves collecting metrics such as CPU
utilization, memory usage, and response time.
Performance analysis on this data helps identify
system performance bottlenecks and optimize
system performance. Request tracing also helps to
identify performance issues and identify areas that
need to be optimized: the trace method traces the
path of requests through various system
components. For hardware and software systems,
system monitoring is used to diagnose the state of
the hardware. Condition monitoring involves
determining the current condition, predicting
possible faults, and planning maintenance based on
the actual condition. In project management, system
monitoring allows you to track tasks according to
plan, evaluate results, and adapt strategies to current
conditions. These activities are enabled in system
monitoring by the built-in program and project

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.25 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-2678 290 Volume 24, 2025

evaluation functionality.
Thus, system monitoring is used in the practical

application of systems theory theses to ensure
effective management, analysis, and optimization of
various systems. The representation of the
relationship between system monitoring and systems
theory in abstract and applied aspects can be fully
transposed to the hardware and software system. As
it has been shown, considering it as a complex
system it is reasonable to proceed from the thesis of
systems theory to design the architecture and
formulate functional requirements, taking into
account its purpose as a system. And, designating
system monitoring as a tool for analyzing and
understanding complex systems, we specify the
service task of designing a monitoring system to
ensure the effective functioning of the warehouse
management hardware and software complex.

3 Approach to the Design of a

 Monitoring System based on the

 Principles of Structural Analysis

 of Systems
The principles of structural analysis of systems are
formulated as follows, [8]:

Principle 1 - the more specialized or complex a
system is, the less adaptable it is to changing
conditions.

Principle 2 - the larger the system, the more
resources are required to support it, and the increase
is not linear but non-linear.

Principle 3 - systems often contain other systems
or are themselves components of larger systems.

Principle 4 - systems grow over time, both in
terms of size and structural complexity.

 Their application at the design stage of the
system monitoring service of the hardware and
software warehouse management complex allowed
us to justify the choice of architectural solutions,
selection logic, and interaction schemes of the
system components. In this way, a positive practice
of an orderly and conscious approach to designing
IT solutions was developed without the prevalence
of random or opportunistic factors characterizing the
external environment of the development process
(technological hype, competition).

The designed system monitoring service
contains the following components:
1. A server that receives and processes requests and

performs all calculations.
2. A database that stores all the metrics obtained.
3. A query interface to retrieve specific monitoring

information.

4. Agents that collect data on users' computers and
send it to the server.

This means designing a layered architecture in
which the implementation of each of the four layers
will be independent of the others, and the exchange
of information will be done by communication
between the components.

Separating the logic (server and agents) became
a necessary solution as the components will be on
different physical devices. This is a modern
approach to ensuring the information security of the
IT infrastructure, [21], [22]. Therefore, the choice
between multi-tier and three-tier architectures is
driven by the specifics of the service being
developed, although this choice reinforces the risks
contained in the description of the fourth principle of
structural analysis of systems, [8].

Obviously, all components in the system must
functionally interact with each other. And the choice
of interaction type includes two options -
synchronous (blocking) and asynchronous (non-
blocking). Keeping in mind that parallel work of
system fragments is not a sufficient sign of
asynchronousness, let's focus on the fact that during
synchronous interaction the server ‘knows’ that the
client's state will not change while processing the
request. This ensures full synchronization of
components, increasing the reliability and fault
tolerance of the system.

However, we chose the non-blocking type of
synchronization not because it provides better
system performance, but because of the multiple
functions of the server and agents (besides
communication) in the designed monitoring system.
Since the agent continuously sends data to the
server, choosing a synchronous model, will result in
no time to collect metrics on the device.

The second software component created entirely
by the author is the server. The server consists of
four main modules that implement the server logic.
The UML diagram of the component is shown in
Figure 1.

Network interaction with external applications
and users is based on the TCP/IP model. Data
exchange between applications, which are
distributed on different nodes of the network, is
implemented by the web service through the API
programming interface. Among the many patterns
for correct API implementation, the most common
ones are SOAP API and REST API. SOAP is well-
suited for complex and structured operations. The
protocol also offers state persistence about the
current state of the user or application on the server.
While the advantages are obvious, the choice of
SOAP API will increase the risks of non-linear

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.25 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-2678 291 Volume 24, 2025

growth of resources to support the system (Principle
2).

Fig. 1: UML diagram of a server

In addition, a simulation model of using both

protocol protocols on the same data showed that the
SOAP API protocol is more complex to implement
and use, and its XML syntax is redundant for the
operations performed (Principle 4). For the REST
API protocol, unfortunately, there is no transactional
support, and no client state records are stored. And
also we have to put up with the necessity of a multi-
tier system (principle 4), because the servers are
located on different levels, but each server interacts
only with the nearest levels and is not connected by
requests with others. However, the simplicity of
requests (it is not planned to send complex
structured requests in the designed service) and high
speed of data exchange for increased frequency of
metrics updates were the determining factors in
deciding that the network interaction of the web
server will be based on the principles of RESTful
services.

A separate decision was made to organized
communication between the agents and the server.
Unlike the server, agents exchange information only
with the server. Since there is no need to comply
with strict specifications, as there is no
communication with third-party components, the use
of low-level protocols (transport-level) TCP or UDP
is justified. For communication at this level sockets
based on the transport level protocol are used. The
choice of the optimal solution was determined by the
functional characteristics of the designed monitoring
system - the network connection should be reliable
and consistent, i.e. all sent information is guaranteed
to reach the recipient in the same order in which it
was sent.

In system monitoring, agents send information
to a server (which is assumed to have an API), and
the server sends commands to the agents (to run
tests or change settings) in the form of small strings.

The speed of interaction is not as significant for
system monitoring as the accuracy and integrity of
the data. In this case, the time difference in sending
commands (which are sent not so often and have a
small volume) will not be noticeable. However, any
loss of data is critical. Therefore, the optimal choice
is TCP protocol, including because UDP does not
guarantee the sending of data and their order, but it
guarantees that the packet will either reach
completely or not reach at all. It is worth noting that
the API call to the server will work using the HTTP
protocol, which in turn is based on the same TCP.

All the above-described architectural solutions
refer to the central component of the system - the
server and ways of its communication with other
layers. As for the database architecture, the
following requirements were made: a) the database
should work as a separate server; b) the database
should be able to work with heterogeneous data that
does not have a clear structure.

It was decided to organize the work with the
database according to CRUD methodology:
1. Create (POST method in REST) - records are

created in the database.
2. Read (GET method in REST) - data is read from

the database.
3. Update (PUT method in REST) - the data in the

database is updated.
4. Delete (DELETE method in REST) - data is

deleted from the database.

CRUD is the basis for most modern web

applications, it is used in many popular frameworks
and programming languages, making it a universal
solution for application development. The
architecture solution is particularly valuable for the
system being designed due to the fact that CRUD
operations can be easily integrated into various
application architectures, including RESTful APIs.
This allows for scalable solutions that can adapt to
changing requirements. This fact reduces the
complexity of the system (Principle 1). For example,
adding new functions or modifying existing
operations is done using the CRUD methodology
without significant changes to the application
architecture.

The last component of the designed monitoring
system is the internal work of data collection agents.
Six subclasses of the Monitor control class are
formed (discussed in detail in the next section).

The UML diagram of the agent classes is
presented in Figure 2.

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.25 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-2678 292 Volume 24, 2025

Fig. 2: UML diagram of an agent

For their efficient operation, it is assumed to

collect metrics for each subclass in parallel (and to
collect different data within the same subclass in
parallel). There are three technologies for
parallelizing computation: multithreading,
multiprocessing, and asynchronous.

Since the agent sends to the server a packet with
the state of all the sampling points of the system
monitoring parameters at once, it must know about
the state of the actual data. To realize such a thing in
multiprocessing, processes have to send data to the
main process using operating system techniques,
which slows down the agent. Therefore, the main
choice is between asynchrony and multithreading.

The asynchronous model involves working in a
single thread in which the programprogram moves
on to the next thread without waiting for the task to
complete. This approach is effective in systems with
a large number of requests (for example, a server),
as it is inefficient to allocate system resources for
each new request. However, in small components,
asynchrony will work slower than multithreading
(especially considering that different threads can be
run on different cores), so for agents specifically, the
most optimal option is to create a limited number of
threads.

Summary, let us highlight the following key
ideas of the architecture of the designed service of
system monitoring of the hardware and software
complex of warehouse management based on the
results of applying the principles of structural
analysis of systems:
1. The server is built on a multilevel client-server

architecture. The component is a RESTful service
accessed via HTTP protocol. Communication
with agents takes place either via API or TCP
connection. The server operation is
asynchronous.

2. The database functions as a separate server that
processes heterogeneous data. Interaction with

the database is performed using CRUD
methodology.

3. data collection agents collect metrics in parallel,
being able to send all relevant information at any
time.

4 Designing the Architecture of the

 System Monitoring Service
The implementation of data collection agents was
carried out in the following logic. The agent
algorithm programmatically collects data from the
device on which it is located and structures it with
processing. The algorithm sends the obtained
metrics to the server. Also implemented is an option
for the agent to listen to the server over a socket,
wait for a command from it, execute, and send a
response. The agent also periodically sends
messages about ip addresses belonging to the client.
This signal is required to initialize the agent on the
server and to create a separate collection for it in the
database.

The agent has a centralized control class
Monitor, which consists of six subclasses. The agent
program of the designed system monitoring service
implements the operation of six subclasses for data
monitoring:

1. ApplicationsMonitor - installed applications.
2. LanMonitor - local network.
3. SystemLoadMonitor - system load.
4. NetworkMonitor - network activity.
5. ProcessesMonitor - running processes.
6. ServicesMonitor - list of services.

All instances of subclasses are stored as Monitor

attributes.
The principle of operation of all monitors is

similar. Each class has a result attribute, which
stores data to be sent to the server for each sample.
The classes have a monitor method, which runs in an
infinite loop the collector functions that update the
result attribute upon completion of their work.

The monitor is the main controlling class of the
agent, which is responsible for communicating with
the server and managing the monitor classes. At
initialization, instances of the previously described
classes are created and stored as Monitor's fields.
Among other attributes, the class stores its address
(self.ip), a list of other addresses (self.ips), server
address (self.serverAddr), and socket port
(sel.messagePort).

The agent operation contains several parameters
that can be configured manually. For this purpose,
there is a config.json file consisting of four

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.25 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-2678 293 Volume 24, 2025

parameters:
1. server_address - address of the remote monitoring

service.
2. message_port - the socket port through which the

agent receives commands from the server.
3. net_interface - parameter for setting the

curInterface attribute of the NetworkMonitor
class.

4. net_port - parameter to configure the port
attribute of the NetworkMonitor class.

Therefore, before starting its work, Monitor

reads the current settings written in the file and
writes them to the corresponding variables. Then the
main method of the class - run.

First, the method passes through all monitors
and starts the monitor method in separate threads,
starting data collection. Then a thread is created in
which the agent continuously sends a ‘live’
document to the server. Next, a thread is created in
which the agent continuously sends a packet with
information about itself (ip, ips, messagePort) once
every 10 seconds. This is necessary for several
reasons. Firstly, initialize the agent on the server (the
server learns about the new client and stores its
address and port). Thanks to this periodic constant
sending, it doesn't matter which component started
first, the agent or the server, the latter still learns
about the existence of the former after some time.
Secondly, if the agent has new addresses or the user
has changed the port earlier, the server will notice
these changes and update the data in the database.

The sendLive method is responsible for sending
‘live’ packets. It passes through the result attribute
of each monitor class, saves the received data, and
sends it to the server. This is the advantage of
running separate components in threads because the
method does not need to wait for the end of the
iteration of any builder, it immediately has access to
the data area where the metrics are stored.

After seven threads have been created, the
program goes into an infinite loop in which it waits
for and processes messages from the server. There
are only two types of messages received: running a
command and changing attributes of the
NetworkMonitor class (curInterface and port).

In general, sending any messages from the agent
to the server is done via the HTTP protocol. The
server address, including the port on which it is
running, is specified in the config.json file
(server_address key). As an alternative option, we
considered message exchange via socket (the same
way the server sends messages to agents). The
choice in favor of the first option is justified by the
type of packets sent. Messages sent by agents can

have unlimited size and are stored in JSON format.
Transmitting such messages as strings over a
message socket would be problematic for two
reasons:

- The server needs to add additional
functionality to listen for messages from agents.
Since it already processes HTTP requests, the best
option is to send data to the port it already occupies,
rather than create new processes that will occupy
memory.

- Since the data is stored in JSON format,
working with HTTP, which is adapted to work with
this format, is more convenient. Data via sockets is
sent as a binary string, which then needs to be
correctly converted to JSON, which is just an
additional step in communication between agents
and servers.

Therefore, it was decided to send messages by
agents by accessing the server API.

If a command comes from the server, the
algorithm calls the necessary method of the monitor
class for which the command came and sends the
result to the server. For this purpose, the sendTest
method is written, which, using the urllib3 library,
makes 4 attempts to send the result to the /test
address of the server. The results of the command
are stored in JSON format, which is sent in the
POST request. Figure 3 shows the implementation
of two functions: testDisks (calls the
SystemLoadMonitor class method and sends the
result by calling sendTest) and the sendTest function
itself.

Fig. 3: Code fragment. Sending the test result to the
server (PyCharm)

If the server sends a message about changing the

NetworkMonitor parameter, the agent stops the sniff
function method, changing the changed value to
True, having previously updated the class attributes.
Thus, a new packet search will be performed using
the already-changed parameters. At the same time,
the parameter change is also performed in the
config.json file, so that when the agent is restarted, it
remembers the last state. The setParam method is
responsible for changing parameters. First, it reads
the contents of the config.json file, then updates the
necessary attributes (port or interface, depending on

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.25 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-2678 294 Volume 24, 2025

the server request) of the NetworkMonitor class, and
finally updates the contents of config.json by adding
new attribute values. The implementation of the
parameter change function is shown in Figure 4.

Fig. 4: Code fragment. Changing filtering
parameters (PyCharm)

All messages are processed in separate threads

so as not to delay the other packets in the queue.
Defining the stack for the development of

monitoring agents at the stage of designing the
monitoring system architecture involved only
selecting a programming language, since the agents
do not use a database or other third-party software.
The language selection was done experimentally -
prototypes were written in Python, Java, C++ and
C#. The main criteria were completeness of data
sampling, speed of operation, and cross-platform.

Java and C++ could not collect all the necessary
data without unlimited access to external libraries
and insufficient inbuilt libraries to collect complete
information for each section. Cross-platform
problems occurred in C++ and C#, where it is
difficult to adapt the program to different platforms
while maintaining agent efficiency and code
transparency. The optimal solution was Python,
which has a wide set of libraries that allow
thecollection of information on all sections in full.
Python is also extremely convenient for cross-
platform development, requiring almost no
additional branching in the code for this purpose.

The minus was the speed of collecting data
about running processes on Windows. For
comparison: the speed of data collection on this
parameter on C# is less than a second, on Python -
about 30 seconds. That's why we decided to write
the whole agent functionality in Python, calling the
collected exe file written in C# under Windows. It
was taken into account that under Windows the exe
runs only in case of process data.

MongoDB was chosen as the database. Since the
structure of packages, which can change
dynamically, is not known in advance, the choice
was made only from NoSQL DBMS. The reasons

for choosing MongoDB were the following factors.
First of all, it was taken into account that the server
is a RESTful service, that is, it communicates using
JSON packets. Further, the language of agent
development was chosen Python, the main data
structure which is a dictionary, which has the same
structure as the JSON file. Therefore, a database
convenient for working with this format was
selected - Redis and MongoDB.

Redis stores data in RAM and requires about 4
GB, which is a heavy load on the system, especially
when the stored data increases. Data in key-value
storage can only be accessed by key. You cannot
query records by multiple attributes, not to mention
more complex queries, which is also a disadvantage
when choosing. MongoDB, in its turn, does not have
the mentioned disadvantages of its analog, but it
works slower. At the same time, the DBMS allows
you to create indexing by timestamps, which will
help to speed up queries. That is why MongoBD was
chosen as the database.

Server implementation can be divided into two
components: backend and frontend. The choice of
frontend implementation language is obvious -
JavaScript. The language is the most popular and
convenient tool in this industry. For the backend was
chosen Python, or rather its framework Django.
Python is convenient for cross-platform
development, not requiring additional branches in
the code. The choice is justified if both the agents
and the test system into which the web service is to
be integrated are written in Python - for better
compatibility it is advisable to develop the server in
the same language. The choice seems logical also
when developing a cross-platform solution.
Experiments with languages when writing agents
revealed the problems of adapting the program in
C++, and C# for different platforms - it turned out to
be impossible to preserve the agent's efficiency and
code transparency. Django was chosen among the
frameworks, as it is the framework with the greatest
functionality and is the main framework for the
development of web services.

The last item is to select a web server. Among
the options were Nginx and Apache (two of the most
popular web servers serving more than 50% of all
traffic on the Internet). Both servers have the
necessary functionality and flexibility of
configuration for the monitor. Therefore, the key
criterion was speed of operation. The Apache
architecture consists of a kernel and its associated
modules: the kernel accepts connections, and the
modules correspond to functions executed on
request. As the number of requests increases,
Apache's centralized architecture causes the web

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.25 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-2678 295 Volume 24, 2025

server to slow down. Nginx was originally designed
around asynchronous non-blocking event-driven
algorithms. The server creates worker processes,
each of which can handle thousands of connections.
This approach to connection processing allows
Nginx to scale with limited resources.

Because the server is single-threaded and does
not create processes for each connection, memory,
and CPU usage are relatively uniform, even under
high loads. Even with a small number of requests,
depending on the type of content (dynamic or static),
Nginx is either as good as or better than Apache in
terms of performance. Therefore, Nginx will act as
the web server on which the monitor will be
configured.

Thus, the entire technology stack for each layer
of the designed monitoring system has been fully
defined.

5 Description of System Monitoring

 Service Functionality
Before implementing the backend server, the API
was compiled and described, including url, available
methods, and input and output data. This was done
in order to demonstrate what functionality the server
performs and what queries it can answer.

Table 1. API Base Keys
№ Team Request
1 Get live documents GET/api/v1/get_live/<st

r:ip>
2 Start timer POST/api/v1/start_timer
3 Stop timer POST

/api/v1/stop_timer
4 Request the last state of the

timer
GET/api/v1/get_timer_l
ast_step/<str:ip>/<str:ui
d>

5 Request all timer states GET/api/v1/get_timer_a
ll_steps/<str:ip>/<str:ui
d>

6 Request timer initializers GET/api/v1/get_timer_s
tarts/<str:ip>

7 Request all tests GET/api/v1/get_tests/<s
tr:ip>

8 Query a specific test GET/api/v1/get_test/<st
r:ip>/<str:uid>

9 Get metrics averages GET/api/v1/get_avg/<st
r:ip>

10 Get the last n documents
with average values

GET/api/v1/get_avg_ste
ps/<str:ip>/<int:n>

11 Change network interface PUT
/api/v1/set_interface

12 Change network port PUT /api/v1/set_port
13 Request a report GET/api/v1/get_report/

<str:ip>
14 Get device evaluation GET/api/v1/get_rate/<st

r:ip>

Since the task of designing a RESTful service
was performed, according to its specification, the url
starts with api/vx/, where x is the API version (at the
time of designing the service v1). This will ensure
backward compatibility when the API functionality
changes. If some value needs to be passed in the
URL itself, it is denoted as follows: <type:name>,
where type is the type of the variable and name is
the name. All APIs return status 200 if the request is
correct, otherwise they return error code 40X.

The list with a description of available
commands and their corresponding URLs is
presented in Table 1.

The following are explanations of command
usage for a number of non-obvious or ambiguous
command values when using the system monitoring
service.

Executing the start timer command (POST
/api/v1/start_timer) outputs a string containing the
uid of the created timer. Executing the stop timer
command (POST /api/v1/stop_timer) sends an
appropriate signal if the timer needs to be stopped
early or if there is no time limit.

On the request timer initializers command (GET
/api/v1/get_timer_starts/<str:ip>), the method is
called to get a list of all previously started timers
with information about them.

When executing the command to request a
specific test (GET
/api/v1/get_test/<str:ip>/<str:uid>), if the test has
not yet completed execution (the ‘ready’ field is set
to Flase), a JSON object {‘status’: False} with
response code 400 will be returned.

For the command to get average values of
metrics (GET /api/v1/get_avg/<str:ip>) the return
value is the document ‘avg’ (JSON Object) in its
original form (the metrics are not averaged).

For the command to get the last n documents
with average values (GET
/api/v1/get_avg_steps/<str:ip>/<int:n>) n is an
integer value, the number of documents. If their
number is less than n - all documents will be shown.
The change network port command (PUT
/api/v1/set_port) uses the method called to change
the port attribute of the NetworkMonitor class.

To request a report (GET
/api/v1/get_report/<str:ip>), a JSON report object
whose structure is specified by the ‘avg’ document
serves as the returned document.

For the get device rating command (GET
/api/v1/get_rate/<str:ip>), an integer value serves as
the returned document.

According to the REST specification, the service
exchanges information using the JSON format, so it
is necessary to describe the format of input and

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.25 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-2678 296 Volume 24, 2025

output data (keys), each of which is mandatory.
The representation of input and output data

provides an understanding of the data structure
required to execute a particular command (data
types, mandatory and optional fields, data formats,
and value constraints).

Table 2 describes the input data parameters. The
first column contains the names of the keys, the
second column contains their description, and the
third column contains the number of commands in
which they must be present.

Table 2. Input data for API commands

Input Data Description Commands

Ip
IP address of the device you want
to retrieve information about
(string)

2, 3, 11, 12

Timeout

The number of seconds the timer
should run (number). If there is no
set time, and the timer should wait
for the end signal, the value 0 is
specified.

2

Sections

An array of strings specifying the
sampling sections for which
metrics should be collected for the
time interval (Array)

2

proc - running processes

app - installed applications

load - system load

srvc - list of services

net - network activity

Uid Timer ID (string) 3
Interface New interface name (string) 11
Port New port value (number) 12

Table 3 describes the output data parameters.

The structure of the table is similar to the structure
of Table 2.

Table 3. Output data for API commands

Output
Data

Description Commands

Data
List of JSON objects with ‘live’
documents for each sampling point
(array)

1

Data Array with last received ‘timer_cur’
documents with specified uid (array)

4

Data Array with all ‘timer_cur’ documents
with the specified uid (array)

5

Data Array with all ‘timer_start’
documents (array)

6

Data Array of all ‘test’ documents (array) 7

Status Status responsible for test readiness
(boolean)

8

Result
The result of the test execution.
Corresponds to the field ‘result’ of
the document ‘test’ (object)

8

Data Returns an array of the last n
documents ‘avg_step’ (array)

10

The system monitoring service provides an
interface that allows you to perform single
operations on resources in the system without
having to maintain state between calls. The APIs of
one-time commands are shown in Table 4.

Table 4. APIs of one-time commands
Request Command

Conduct a speed test of
the discs

POST /api/v1/disks_load

Provide a list of users in
the domain

POST /api/v1/users_list

List network drives POST /api/v1/net_disks
Give out the user
information

POST /api/v1/user_info

List shares with a user POST /api/v1/common_sources
List local groups POST /api/v1/local_groups
Check host availability POST /api/v1/ping_host

The peculiarity of the API of one-time

commands of the projected service is that they
include only non-muting commands that read data.
All APIs related to ‘test’ documents as a response
return a string with the identifier of the created test
in case of a correct request. After that, it is necessary
to address the system address (API endpoint to
which requests are sent to get the results of
operations).

6 Server Backend Implementation
This section describes the development of the
server's internal logic, how it performs calculations,
and communicates with other components.

Five main functional modules can be distinguished
in the server structure:
1. urls.py - contains all the main URL paths that the

server processes, correlated with handler
methods.

2. views.py - contains the implementation of all
handler methods.

3. db.py - implements methods of interaction with
the database.

4. statistics.py - module responsible for the section
with reports.

5. common.py is a module that implements general-
purpose functions for packet conversion,
identifier generation, etc.

In urls.py, all the necessary objects that bind

addresses and methods of views.py are created. The
django.urls.path object on the server is responsible
for linking the URL to the method it calls. The
object's constructor takes two mandatory parameters
as input: the path itself and the function that will

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.25 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-2678 297 Volume 24, 2025

handle the request (Figure 5).

Fig. 5: Code fragment. Processed addresses (using
PyCharm)

It is accepted that each method in views takes as

input at least one mandatory argument -
HttpRequest, the request that came to the
corresponding address. This object contains the
necessary information about the request (method,
JSON, address, etc.). The system monitoring service
implements the logic that first each method
compares the received method with the expected
method, if they differ, error 405 (Method not
allowed) is returned. A total of two objects returned
by the functions are provided:
1. HttpResponse. A normal HTTP response, used

if the response does not contain a JSON file, and
you only need to send the response code and, if
necessary, a string.

2. JsonResponse. A response that is sent if the
result contains a JSON object. This also
specifies the response code.

We assume that methods that accept methods

other than GET have the @csrf_exempt decorator.
Normally, when a request is made to a server, it is
expected that the packet being sent comes from the
current website and not from some other domain (for
security). In the designed system monitoring service,
to ensure that this happens, the server looks for a
CSRF token in the request that would indicate that it
is an allowed request. The server must send a unique
token to the browser and check whether the browser
sends it in response to the request. If the tokens
match, the request is valid, if not, it is rejected. Since
the work of the system monitoring service involves
interaction with external components, it is necessary
to allow them to use any methods (that's why all
functions check requests for correctness).

Views methods themselves do not perform
calculations, they accept a request, call db.py
methods and return a response, forming data packets
via API. The db.py module is responsible for
connecting to the database and sending queries. The
database creation form is shown in Figure 6. Let's
also add that the server with the database by default
is running on localhost:27017.

Fig. 6: Creating a database (using MongoDB)

The solution used is to access the db.py module

asynchronously, variables are declared globally so
that they can be accessed from any area of the
system at any time. The connection to the MongoDB
server is ‘dbHost =
pymongo.MongoClient(’mongodb://localhost:27017
/‘)’. Connection to the monitor database (Db is an
object whose keys are collection names and values
are collections themselves) - ‘db =
dbHost[’SystemMonitorDB‘]’.

The logic of the service provides that the
module functions include searching and creating
documents and updating their contents. The main
methods of collection are:
1. find_one. Takes as input the dictionary by which

the documents in the database are searched and
returns the first matching one. For example, in
the agent socket port change method, the required
document in the client's collection is searched by
ip using the command:
‘db[’clients‘].find_one({’ip‘: ip})’.

2. find. Find and output a list of all documents that

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.25 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-2678 298 Volume 24, 2025

match the filter. It takes the same argument as
input. For example, to find all ‘live’ documents,
the following command is executed:
‘db[ip].find({’section": “live”})’.

3. update_one. Search for the first matching
document and update its fields. For example,
when the test has finished its execution, you need
to change the value of the result field to True and
add a field with the result. This is achieved by the
command: ‘db[ip].update_one({‘section’: ‘test‘,
“uid”: uid}, {’$set": {‘ready’: True, ‘result’:
result}})’. The first argument is the search filter,
and the second argument is the fields to be
changed and their new values. The $set operator
makes the DBMS understand that the old value
should be completely replaced with the new one.

4. update_many. The operation scenario is the same
as update_one, but all the found documents are
changed. Work example:
‘db[ip].update_many({’section‘: “timer_start”,
“uid”: uid}, {’$set‘: {’finished‘: True}})’. When
the timer finishes, all of its ‘timer_start’ start
documents change the value of the ‘finished’
field to True.

5. insert_one. A method that takes only one
argument as input - a document (in Python it's a
dictionary) that writes to a collection. Example:
collection.insert_one(avg_step). When a new
copy of the current document ‘avg’ is created, the
document ‘avg_step’ is inserted into the
collection.

6. insert_many. A similar method, but which takes
as input a list of documents, each of which is
inserted into the collection. For example, live
documents are usually updated, but if the
collection is new, they need to be created first. In
the service, this is achieved with the command:
collection.insert_many(liveDocumentsList).

It should be clarified that all the functionality of

the system monitoring service of the module
function is performed by the described methods.

The backend of the server also implements a
module - common.py. Its functions are
heterogeneous, so its implementation is the result of
choosing one of several service design scenarios.

The first function getAllProcs converts the
process tree into a list (implemented through a
dictionary, but without nesting). When the timer is
started, the processes are displayed as a list, as this
type of monitoring only collects changed processes,
so there is no need to save the whole branch
structure.

The second function sendCommand sends a
command as a string to the agent. It takes as input

the command itself, a tuple of socket address and
port. The service provides several commands in
total:
1. ‘[TEST] [DISKS] [disc_list] [uid_test]’ - test the

input and output speed of data on the disc.
2. ‘[TEST] [LAN] [test_type] [additional

parameters with a space] [uid_test_type]’ - run a
test related to the local network. The types of
tests are:

a. User list. test_type = ‘USERS’, no additional
parameters.

b. List of network drives. test_type = ‘DISKS’, no
additional parameters.

c. User information. test_type = ‘USER_INFO’,
additional parameters: username.

d. Shared resources. test_type =
‘COMMON_SOURCES’, additional parameters:
username.

e. Local groups. test_type = ‘GROUPS’, no
additional parameters.

f. Host availability. test_type = ‘PING_HOST’,
additional parameters: host address.

3. ‘[SET] [INTERFACE] [new value]’ - change the
value of the network interface.

4. ‘[SET] [PORT] [new value]’ - change the
network port.

The third function of the genUID service

generates a unique sequence of characters that plays
the role of an identifier. The function selects a
random character from Latin letters (both uppercase
and lowercase) or numbers 21 times, producing a
string of 21 characters long. The probability of
getting two identical identifiers is 2.3e-28, i.e. almost
indistinguishable from 0.

Next comes a group of functions that form
packets for timers. Two ‘live’ packages are fed to
the input, between which the methods find the
difference (which elements were not present before,
which appeared, which changed status, etc.). These
are called by the diffMeasurements function, which
finds the difference between ‘timer_start’ and the
new ‘live’.

The functions that calculate the difference
separately for a particular sample work on the same
principle, first they use the first data structure to add
to the result those items that are not in the new one
(i.e. the timer will show that some items have been
deleted/stopped). Then the program goes through the
new structure, adding items that are not in the old
one (some items downloaded/started while the timer
was running). The final object is a dictionary with
two keys:

1. ‘+": a list of items that appeared.
2. ‘-": a list of disappeared items.

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.25 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-2678 299 Volume 24, 2025

An example of such a function (process packet
difference) is shown in Figure 7.

Fig. 7: Code fragment. Calculation of changed
processes

The last three functions are responsible for

creating ‘avg’ and ‘avg_step’ documents. The first
‘avg’ created in the collection copies the values of
the current ‘live’ documents and adds the field
‘count’=1 (function generateAvg). Then, when a
new ‘live’ appears, the function adds all numerical
parameters of the latter to the values of the ‘avg’ and
increases ‘count’ by 1 (function calculateAvg).
Thus, ‘avg’ is the sum of all received ‘live’ packets.
The last function createAvgStep receives an ‘avg’
packet as input and divides all its numerical values
by ‘count’.

The described solution for selecting modules
and assembling collection methods is the result of
working with the second principle of structural
analysis of systems, [8]. It includes only functionally
necessary system monitoring components, which are
interconnected and implemented in such a way as to
avoid an uncontrolled increase of resources to
maintain the service functioning.

Undoubtedly, there will be an increase in
resource requirements, and the content of the
principle is one of the proofs of this. However, the
result of the system monitoring service design will
ensure their proportional increase as a result of the
growing number of users. Let us also mention that
the configured server backend solution will not
solve the problem of non-linear increase of
resources as a result of device growth due to the
necessity of load balancing. This problem is not
solved at the software level, as the solution assumes
a high level of IT infrastructure maturity (according
to Microsoft's model - Rationalised; according to
Gartner's model - service level).

7 Conclusion
As a result, the architecture of the solution was
designed - a system monitoring server that works

with the database, exchanges messages with agents
and clients, responds to incoming requests according
to API, and performs all the described functionality.

Although the designed monitoring system
implements the required functionality in full, some
limitations were reached during the process.
1. Work should be done to optimize the web

interface. This element was developed in native
JavaScript, which negatively affects the speed of
work. Since there are libraries that simplify the
code structure, bypassing unnecessary steps that
slow down the work, it is possible to reduce the
number of iterations, the size of messages sent,
and the complexity of algorithms.

2. An unresolved limitation is that working with a
list of applications on MacOS is slower than on
other operating systems by about 2-3 times. This
is explained by the fact that in MacOS there is
no built-in mechanism that would immediately
display information about the application, you
need to search for a special file in the package
folder and read information from it. All this
takes a relatively long time. At the same time,
no other way to cover this sample has been
found.

3. When collecting process data on Windows, a
limitation on the completeness of the
information has been reached. Since process
collection on Windows was written in C#, the
data that can be obtained with it is presented in a
smaller volume than in the psutil library on
Python. All important parameters are
nevertheless present in both implementations,
but minor metrics (e.g., open files) are not
implemented on Windows.

4. When performing disc speed tests on Linux and
macOS, there are only two tests without
separating between random data and sequential
data. The four tests available on Windows are
possible in the future.

The found limitations do not reduce the

significance of the obtained result. As a result, the
service of remote monitoring of the functioning of
the hardware and software complex of warehouse
management was designed and developed. The
monitor meets all technical requirements for data
sampling and functionality. The advantage of the
proposed architectural solution is the application of
the principles of structural analysis of systems in the
design. This allowed us to obtain a justified result,
devoid of opportunistic distortions, at the end of the
project.

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.25 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-2678 300 Volume 24, 2025

Application of structural principles of systems
analysis allowed to avoid risks:
- associated with excessive complication of the

designed system in favor of functionality
expansion;

- related to the choice of algorithms of the
interaction of system components for its
adaptation to changing conditions;

- associated with the choice of a stack of design and
development technologies that provoke non-
linear growth of resources required for system
maintenance and support.

References:

[1] Wiener N. Perspectives in Cybernetics. In:
Wiener N, Schadé JPBT-P in BR, editors. vol.
17, Elsevier; 1965, p. 399–415.
https://doi.org/https://doi.org/10.1016/S0079-
6123(08)60174-0.

[2] Hofkirchner W, Schafranek M. General
System Theory. In: Hooker CBT-P of CS,
editor. Handb. Philos. Sci., vol. 10,
Amsterdam: North-Holland; 2011, p. 177–94.
https://doi.org/https://doi.org/10.1016/B978-0-
444-52076-0.50006-7.

[3] Rousseau D. General Systems Theory: Its
Present and Potential. Syst Res Behav Sci
2015;32:522–33.
https://doi.org/https://doi.org/10.1002/sres.235
4.

[4] Anokhin P. Nodal questions of the theory of

functional systems. in Russ. Moscow: Nauka;
1980.

[5] Bertalanffy L von, Sutherland JW. General
Systems Theory: Foundations, Developments,
Applications. IEEE Trans Syst Man Cybern
1974;SMC-4:592.
https://doi.org/10.1109/TSMC.1974.4309376.

[6] Stallings W. Gerald M. Weinberg. An

introduction to general systems thinking. New
York: Wiley, 1975, 279 pp. Behav Sci
1976;21:289–90.
https://doi.org/https://doi.org/10.1002/bs.3830
210409.

[7] Miller GR. The current status of theory and
research in interpersonal communication.
Hum Commun Res 1978;4:164–78.
https://doi.org/https://doi.org/10.1111/j.1468-
2958.1978.tb00606.x.

[8] Yourdon E. Modern Structured Analysis.
Prentice-Hall; 1989.

[9] Wognum N, Mo J, Stjepandić J.
Transdisciplinary Engineering Systems.
Kenett RS, Swarz RS, Zo. A, Ed. Syst. Eng.

Fourth Ind. Revolut. Big Data, Nov. Technol.

Mod. Syst. Eng., Wiley; 2019, p. 483–510.
[10] Wognum N, Verhagen WJC, Stjepandić J.

Trans-Disciplinary Systems as Complex
Systems. Vol. 5 Transdiscipl. Eng. A Paradig.
Shift, 2017, p. 745–54.
https://doi.org/10.3233/978-1-61499-779-5-
745.

[11] Bogdanov A. Tektologia: Universal

organization science. Book 1. Hull, UK:
Center for Systems Studies Press; 1996.

[12] Caddy IN, Helou MM. Supply chains and
their management: Application of general
systems theory. J. Retail Consum. Serv.
2007;14:319–27.
https://doi.org/https://doi.org/10.1016/j.jretcon
ser.2006.12.001.

[13] Welch LR, Samuel AL, Masters MW,
Harrison RD, Wilson M, Caruso J.
Reengineering computer-based systems for
enhanced concurrency and layering. J. Syst.

Softw., 1995;30:45–70.
https://doi.org/https://doi.org/10.1016/0164-
1212(94)00116-5.

[14] Ahmad A, Altamimi AB, Aqib J. A reference

architecture for quantum computing as a

service. J King Saud Univ - Comput Inf Sci
2024;36:102094.
https://doi.org/https://doi.org/10.1016/j.jksuci.
2024.102094.

[15] Beierling H, Richter P, Brandt M, Terfloth L,
Schulte C, Wersing H, Vollmer AL. What you
need to know about a learning robot:
Identifying the enabling architecture of
complex systems. Cogn. Syst. Res.

2024;88:101286.
https://doi.org/https://doi.org/10.1016/j.cogsys
.2024.101286.

[16] Loschi H, Nascimento D, Smolenski R,
Lezynski P. Cyber–physical system for fast
prototyping of power electronic converters in
EMI shaping context. J. Ind. Inf. Integr.

2023;33:100457.
https://doi.org/https://doi.org/10.1016/j.jii.202
3.100457.

[17] Zhang T, Shi Y, Cheng Y, Zeng Y, Zhang X,
Liang S. The design and implementation of
distributed architecture in the CMOR motion
control system. Fusion. Eng. Des.
2023;186:113357.
https://doi.org/https://doi.org/10.1016/j.fuseng
des.2022.113357.

[18] Yang L, Li Zhang X, Yaoming L, Liya L,
Maolin S. Modeling and control methods of a
multi-parameter system for threshing and

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.25 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-2678 301 Volume 24, 2025

https://doi.org/https:/doi.org/10.1016/S0079-6123(08)60174-0
https://doi.org/https:/doi.org/10.1016/S0079-6123(08)60174-0
https://doi.org/https:/doi.org/10.1016/B978-0-444-52076-0.50006-7
https://doi.org/https:/doi.org/10.1016/B978-0-444-52076-0.50006-7
https://doi.org/https:/doi.org/10.1002/sres.2354
https://doi.org/https:/doi.org/10.1002/sres.2354
https://doi.org/https:/doi.org/10.1002/bs.3830210409
https://doi.org/https:/doi.org/10.1002/bs.3830210409
https://doi.org/https:/doi.org/10.1111/j.1468-2958.1978.tb00606.x
https://doi.org/https:/doi.org/10.1111/j.1468-2958.1978.tb00606.x
https://doi.org/10.3233/978-1-61499-779-5-745
https://doi.org/10.3233/978-1-61499-779-5-745
https://doi.org/https:/doi.org/10.1016/j.jretconser.2006.12.001
https://doi.org/https:/doi.org/10.1016/j.jretconser.2006.12.001
https://doi.org/https:/doi.org/10.1016/0164-1212(94)00116-5
https://doi.org/https:/doi.org/10.1016/0164-1212(94)00116-5
https://doi.org/https:/doi.org/10.1016/j.jksuci.2024.102094
https://doi.org/https:/doi.org/10.1016/j.jksuci.2024.102094
https://doi.org/https:/doi.org/10.1016/j.cogsys.2024.101286
https://doi.org/https:/doi.org/10.1016/j.cogsys.2024.101286
https://doi.org/https:/doi.org/10.1016/j.jii.2023.100457
https://doi.org/https:/doi.org/10.1016/j.jii.2023.100457
https://doi.org/https:/doi.org/10.1016/j.fusengdes.2022.113357
https://doi.org/https:/doi.org/10.1016/j.fusengdes.2022.113357

cleaning in grain combine harvesters. Comput.

Electron. Agric. 2024;225:109251.
https://doi.org/https://doi.org/10.1016/j.compa
g.2024.109251.

[19] Anistratov P, Golobokov Y, Pavlov V.
Hardware-software Complex Prototyping for
the Pulse Power Supply Control System of
Tokamak T-15. Procedia Comput. Sci.

2015;66:546–55.
https://doi.org/https://doi.org/10.1016/j.procs.
2015.11.062.

[20] Wiener N. Cybernetics or Control and

Communication in the Animal and the

Machine. The M. I. T. Press; 2019.
https://doi.org/10.7551/mitpress/11810.003.00
10.

[21] Awad AI, Shokry M, Khalaf AAM, Abd-Ellah
MK. Assessment of potential security risks in
advanced metering infrastructure using the
OCTAVE Allegro approach. Comput. Electr.

Eng., 2023;108:108667.
https://doi.org/https://doi.org/10.1016/j.compe
leceng.2023.108667.

[22] Villalón-Fonseca R. The nature of security: A
conceptual framework for integral-
comprehensive modeling of IT security and
cybersecurity. Comput. Secur.

2022;120:102805.
https://doi.org/https://doi.org/10.1016/j.cose.2
022.102805.

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

The authors equally contributed in the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

The research was funded by the grant Russian
Science Foundation No.24-21-20089.

Conflict of Interest

The authors have no conflicts of interest to declare.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2025.24.25 Natalia Mamedova, Timofey Bolonin

E-ISSN: 2224-2678 302 Volume 24, 2025

https://doi.org/https:/doi.org/10.1016/j.compag.2024.109251
https://doi.org/https:/doi.org/10.1016/j.compag.2024.109251
https://doi.org/https:/doi.org/10.1016/j.procs.2015.11.062
https://doi.org/https:/doi.org/10.1016/j.procs.2015.11.062
https://doi.org/10.7551/mitpress/11810.003.0010
https://doi.org/10.7551/mitpress/11810.003.0010
https://doi.org/https:/doi.org/10.1016/j.compeleceng.2023.108667
https://doi.org/https:/doi.org/10.1016/j.compeleceng.2023.108667
https://doi.org/https:/doi.org/10.1016/j.cose.2022.102805
https://doi.org/https:/doi.org/10.1016/j.cose.2022.102805
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

