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Abstract: There are many situations in communications theory, medical imaging, geophysics, signal processing,
and mathematics where one has an optimization problem whose solution is only rendered practical by some
kind of mathematical miracle. A good and canonical example of this is the computation of the singular value
decomposition for either a huge matrix or an integral operator. In particular these problems are typically extremely
ill-posed. Thework ofD. Slepian, H. Landau andH. Pollak at Bell Labs 1960-1965 gives a remedy to this situation.
Inspired in part by questions posed by Claude Shannon they found and exploited a miracle that allows for the
effective computation of the so called ”prolate spheroidal wave functions” which are defined as the eigenfunctions
of an integral operator but turn out to be computable since they are also the eigenfunctions of a second order
differential operator. The numerical computation of these functions has in this fashion become a stable problem,
while the initial one was a very ill-posed one.

I will try to give an account of these developments and indicate at least one open problem inspired by this
remarkable work at Bell Labs.

We will see that the original work started around 1960 has been extended in a few directions, and that the
mathematical miracle underlying this work has influenced many other areas of mathematics ranging from the
study of the Riemann zeta function to very recent work that is inspired by the same effort to find numerically
stable ways to compute quantities of interest.

Key-Words: Time and band limiting, Limited angle tomography, Korteweg-deVries equation, Commuting
integral and differential operators, Meixner-Pollaczek polynomials, Harmonic analysis

1 Introduction
Many years ago I was invited to give a talk at Bell
Labs, in the presence of the authors of the main papers
on the topic of ”Time and band limiting”. I was very
happy since it was a huge audience, including lots
of young people. I started by saying: ”of course at
Bell Labs I do not need to explain my title”. Henry
Landau, who was running the seminar interrupted me
and said ”listen Alberto, with the exception of the
people in the first row, all of us with white hair,
nobody here knows what you are talking about, so
you better start from scratch”. With this in mind I
am going to start at the beginning.

All the developments below can be traced to the
paper, [1].

Consider the finite Fourier transform

(Ef)(z) =

∫ τ

−τ
eizxf(x)dx, z ∈ [−κ, κ],

and the problem of determining its singular value
decomposition.

In practical terms this leads to looking for the

eigenfunctions of the integral operator

(EE∗f)(z) = 2

∫ κ

−κ

sin τ(z − w)

z − w
f(w)dw,

for z ∈ [−κ, κ].
It is well known that this is a numerically

extremely unstable problem. A piece of magic
intervenes here: back in the 1960 − 1964, [2], [3],
noticed and fully exploited the fact that this integral
operator commutes with the differential operator
given by

R(z, ∂z) = ∂z(κ
2 − z2)∂z − τ2z2.

This differential operator R(z, ∂z) happens
to be the “radial part” of the Laplacian in
prolate-spheroidal coordinates. Its eigenfunctions are
thus eigenfunctions of the integral operator EE∗.

These eigenfunctions are known by the name the
prolate-spheroidal functions.

The study, [4], considered the same problem in
n-dimensions. It turns out that the integral operator

(Ef)(z) =
∫ 1

0
JN (czw)

√
czwf(w)dw
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with JN (x) the Bessel function of the first kind,
happens to commute with

∂z(1− z2)∂z − c2z2 +
1/4−N2

z2
,

The study, [5], showed that the integral operator
with the so-called Airy kernel

A(z)A′(w)−A′(z)A(w)

z − w

happens to commute with

∂z(τ − z)∂z − z(τ − z).

Higher order cases were constructed in [6], by use
of the Darboux transformations. The finite Laplace
transform was considered in a paper that I wrote with
M. Bertero. The reader should also look at [7], as well

as [5], [8], [9].
The examples discussed above, and many others,

have something in common. They are built from a
kernel

Kψ(z, w) :=

∫
Γ1

ψ(x, z)ψ†(x,w)dx (1)

where the functions ψ are eigenfunctions of a
differential operator, and one looks for a commuting
differential operator. For important numerical work
see [10].

2 A closer look at the work of the Bell

Labs group
The Bell Labs group wrote a series of papers under
the title ”Prolate spheroidal wave functions, Fourier

analysis and uncertainty”, [2], [3], [4], [11], [12]. Of
these I, II and III, treat signals in continuous time. The
paper IV in this series deals with themultidimensional
case.

Paper V, [12], considers the case when the time
series is given by discrete samples of a signal.

The Bell Labs group did not consider the purely
finite case, treated in [13].

The operator

Lν = −∂2x +
ν2 − 1/4

x2
x > 0 (2)

is a crucial tool in many areas of mathematics.
D. Slepian discovered that the eigenfunction ofLν

give rise to a kermel

K(z1, z2) ≡
∫ T

0
fν(x, z1)fν(x, z2)dx (3)

which allows for a commuting differential operator,
namely

Aν = −∂z(G2− z2)∂z+ z2T 2+G2 ν
2 − 1/4

z2
. (4)

Most of the results below are obtained by trying to
understand and extend the original work at Bell Labs,
see [14].

For the most up-to-date work on this problem see,
[15], [16], [17], [18] and the many references in these
papers which we cannot include in this paper. My
initial motivation for trying to extend the original
work came the topic of limited angle tomography,
[19] and [20].

3 The Korteweg-de Vries equation
This is the partial differential equation of water waves
theory given by

ut = uxxx − 6uux

Many remarkable methods have been found to
produce explicit solutions of this equation, a very
unique situation among non-linear PDE’s.

The reader can find a good guide to this material
in [21], [22], as well as [23], [24] and [25].

One can look at this equation as something similar
to the heat equation: it originated in one area of
physics but it has invaded and enriched many areas
of mathematics.

The KdV equation is part of a hierarchy of which
the simplest one is

ut = ux.

Of course this is trivial to solve. Its solution is given
by time translation of the initial data.

Keep in mind that translation is the structure
behind Fourier analysis. One can look at KdV as
giving rise to a sort of nonlinear Fourier transform.

We will see later the relevance of this to an
extension of earlier work, as very nicely mentioned
in [26].

4 The Darboux process
The “Darboux process” starts from the
(Schroedinger) operator

L = −∂2x + V (x) (5)

whose eigenfunctions are ψ(x, z), and gives a new

family of operators L̃(t) with eigenfunctions to be
given below.

Factorize L

L =

(
−∂x −

φ′(x)

φ(x)

)(
∂x −

φ′(x)

φ(x)

)
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with φ(x) an eigenfunction ofLwith zero eigenvalue.
One has

φ(x) = φ(1)(x) + tφ(2)(x)

with φ(1)(x), φ(2)(x) a basis of the two-dimensional
space of eigenfunctions of L with eigenvalue 0. The
eigenfunction φ(x) is denoted by

φ(x, t).

The new operator L̃, denoted by L̃(t), is

L̃(t) ≡
(
∂x −

φ′(x, t)

φ(x, t)

)(
−∂x −

φ′(x, t)

φ(x, t)

)
one gets

L̃(t) = L− 2∂2x logφ(x, t). (6)

When ψ(x, z) solves

Lψ(x, z) = z2ψ(x, z)

one has

L̃(t)

(
∂x −

φ′(x, t)

φ(x, t)

)
ψ(x, z)

= z2
(
∂x −

φ′(x, t)

φ(x, t)

)
ψ(x, z)

showing that the eigenfunctions of L̃(t) are(
∂x −

φ′(x, t)

φ(x, t)

)
ψ(x, z). (7)

This method has been widely used to extend the work
of the Bell Labs group, and of course, in many other
situations.

Notice that if we define a function θ(x) by

V (x) = − 1

4x2
− 2∂2x log θ(x)

and write

φ(x, t) =
θ̃(x, t)

θ(x)

one gets

L̃(t) = −∂2x −
1

4x2
− 2∂2x log θ̃(x, t).

The eigenfunctions of this new operator are

(1/z)(∂x − ∂x log
θ̃(x, t)

θ(x)
)ψ(x, z).

5 The bispectral problem
This problem was motivated by trying to extend the
results of the Bell Labs group, see, [27], and look at
the comments in page 178 of that paper.

The sequence of functions

θ0 =1,

θ1 =x
1/2,

θ2 =x
2 + t1,

θ3 =
3

4
x9/2 + t2x

1/2,

are given in [27], using the recursion

θ′k+1θk−1 − θk+1θ
′
k−1 = (2k − 1)θ2k.

The potentials Vk(x) obtained from the functions
above, see, [25] , go with the so called “master
symmetries of Korteweg-de Vries”.

The extension of the results in [2], [3], [4], [12],
has taken us far away from signal processing. Amuch
more complete picture of these developments can be
seen in the references at the end of this paper.

6 The KdV hierarchy and its master

symmetries
Both the so called KdV hierarchy as well as what
is known as its master symmetries, play a very
important role in the extensions mentioned above.
The interested reader can consult the references at the
end of the paper for these developments.

7 Commuting integral and

differential operators
For background, before we consider an example, the
reader may want to see the previous sections as well
as [27].

Other useful references are, [2], [3], [4], [11], [12].

7.1 An example.

Start with

L = −∂2x −
1

4x2
− 2∂2x log θ1. (8)

which is also given by

L = −∂2x −
1

4x2
+

1

x2
= −∂2x +

3

4x2
.

One use of the Darboux method gives

L2(t1) = −∂2x −
1

4x2
− 2∂2x log θ2. (9)
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The new eigenfunction is

f̃1(x, z) = (1/z)(∂x − ∂x log
θ2
θ1

)f1(x, z). (10)

The new kernel is

K(z1, z2) ≡
∫ T

0
f̃1(x, z1)f̃1(x, z2)dx, (11)

which becomes

K(z1, z2) =
2t1f1(T, z1)f1(T, z2)

(t1 + T 2)Tz1z2

+
z1f1(T, z1)f2(T, z2)− z2f2(T, z1)f1(T, z2)

z21 − z22
.

It is easy to see that

f(x, z1)
∂f(x,z2)

∂x
− ∂f(x,z1)

∂x
f(x, z2)

z21 − z22
(12)

is a primitive for the product f(x, z1)f(x, z2).

It is now easy to get a differential operator that
commutes with the integral one given by the kernel
above.

8 Almost final comments

The results in [15], [16], [17], [18], [29], deal

with the large class of situations related to the
KP hierarchy, we have only dealt here with the
master symmetries of the KdV evolution equations.
These are related to the Schroedinger (second order)
differential operator. The paper, [28], considers
solutions of the bispectral problem when this second
order differential operator is replaced by a third order
one. The possible existence of commuting pairs of
integral and differential operators in this case is -to the
best of knowledge- largely unexplored territory. For
interesting examples and theoretical tools that could
be applied in this case, see, [29].

The problem considered here is an extension in
the case of higher dimensional Euclidean spaces
of the work in [4]. In a paper with L. Longhi
and M. Perlstadt one finds an excursion into
the non-commutative situation that arises when
Euclidean space is replaced by spheres. That study
was motivated purely by mathematical reasons, and
yet several years later, people working in geophysics
found these results to have practical use, see, [30],
[31].

9 A connection with the Riemann

zeta function
Here the proper references are [32], as well as [33].
The work of A. Connes and collaborators has shown

remarkable similarities between zeros of the Riemann
zeta function in different regions and the spectra of
appropriate extension of the prolate sheroidal wave
operator, inside or outside of the usual interval.

10 An extremal problem
This sections aims at stressing the impact of the
work of the Bell Labs group from the 1960′s in
areas very far removed from signal processing or
communication engineering. The point is, once again,
that the effective computation of certain quantities
can be greatly facilitated when one is dealing with a
differential operator naturally related to the original
problem.

In the recent arXiv posting 2504.05205v1 by A.
Bondarenko, J. Ortega-Cerda, D. Radchenko and
K. Seip the authors consider an extremal problem
considered by L. Hörmander and Bernhardsson back
in 1993.

The problem is to determine the function of
smallest L1 norm in the class of all functions of
so called exponential type not larger than π and
satisfying the condition f(0) = 1. The authors of the
1993 paper did not manage to determine the function
explicitely.

The function in question is factorized in a certain
form in terms of a function φ. This function is
characterized in two different ways, either one of
them serves to pin it down. The two characterizations
involve a functional equation in one case and the
fact that φ satisfies a certain second order differential
equation. This should remind us of the differential
equation that D. Slepian, H. Landau and H. Pollak
found in the 1960s.

But more is true: one finds here a specific
commutation relation that holds for a certain
two-parameter family of differential operators. A
certain differential operator plays a crucil role since it
commutes with any element of the Klein four-group
acting on holomorphic functions in the punctured
complex plane.

The authors are well aware of the similarity with
the work of ”time-frequency” localization of the Bell
Labs group. The authors refer to [33], for the
evolution of this work and most appropriately say that
while the commutativity in question is easy to verify
once somebody points it out, it remains hard to find a
conceptual reason as to why it should be there.

A conceptual explanation is also lacking in the
original work at Bell Labs, in all of its extensions
reviewed in this paper and in this new case. This
remains as a nice challenge for the future.
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11 An open problem
The Lie group SL(2, R) of all real matrices of size
two with nonzero determinant, plays a fundamental
role in areas as (apparently) unrelated as Number
Theory and Microwave Propagation.

The paper, [34], takes a step in the effort to
look at the spherical functions connected with the
group SL(2, R) and its subgroup SO(2). One of the
results in that paper is a description of the polynomial
eigenfunctions of the operator

∆n = −y2(∂2x + ∂2y) + iny∂x.

Here the index n is an integer.
One finds in [34], an explicit description of these

polynomial eigenfunctions that features a sequence of
orthogonal polynomials qj [k] defined by the recursion
relation

qj [k](x) = xqj−1[k](x)− (j−1)(j+2k)qj−2[k](x).

Here the parameter k takes the values k =
0, 1, 2, . . . . These polynomials appear in connection
with eigenfunctions of the ”weight n-Laplacian” with
eigenvalue −k(k + 1).

Notice that the corresponding orthogonality
measure on the real line will be an even function.

In the case when k = 0 I looked for the
orthogonality measure for a while, without much
success. At some point I mentioned this problem
to my colleague Olga Holtz, see, [35], who quickly
managed to identify the first few moments of the
measure and then with the help of the Encyclopedia
of Integer Sequences noticed that their generating
function is related to

1 + tan(x).

Following this observation, each one of us realized
that the orthogonality measure has a density given by

x/(2 sinh(xπ/2)).

In all honesty, and since our methods were
entirely different, I got this answer up to an incorrect
multiplicative factor. My search relied on painful
numerical work, and I had a programming typo.

At this point I had another piece of good luck.
I run into my friend Jim Pitman and mentioned
to him the appearance of this weight with some
hyperbolic function in it. He immediately sent me
a few references including a paper of his with Marc
Yor, see, [36], as well as some ground breaking work
of C.N. Morris, see [37]. After this conversation a
long forgotten memory came back to me: in the great
book by William Feller, the teacher of my teacher,

see, [38], one finds a table of interesting densities and
their characteristic functions. The last one in the table
features some hyperbolic function.

It is interesting to look first at the case k = −1/2
which does not appear in [34].

The generating function of the moments is given
by

1/ cos(x)

and the density of the orthogonality measure is

2/ cosh(x/2)

and most interestingly this is, after a change of
variables, the celebrated arcsine weight connected
with coin tossing given by

1/(y1/2(1− y)1/2)

in the interval [0, 1], to which Feller devotes the entire
chapter 3 of his first volumen, [38], on fluctuations in
the coin tossing game.

Two comments unrelated to the observation
above: in 2022 I wrote a paper where one finds a
use of the Feynman-Kac technology to study the coin
tossing game, and in a paper with L. Velazquez and
J. Wilkening, there is a treatment of an appropriate
quantum version of this problem, where the arcsine
law is replaced by a pair of deltas at the end of the
interval [0, 1].

The relation between these two densities
mentioned above, one in [0, 1] and the other on
the whole real line is given by

x = log(y/(1− y))

or equivalently

y = 1/(1 + exp(−x))

sometimes referred to as the sigmoid function.

In the paper by Morris, see [37], the relation
between y and x is called “the natural observation”.
In the notation of [37], this case is denoted by f1,0.

Wemove now to other values of k. It turns out that
the measures corresponding to the cases of interest in
conection with SL(2, R), [34], i.e. the cases when
k = 0, 1, 2, .... are obtained by taking convolutions
of this density with itself.

The corresponding generating function for the
moments is given by

1/ cos(x)2(k+1)

and the fact that we are taking powers of this function
in the particular case k = −1/2 accounts for the the
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fact that the densities are obtained by convolutions of
this basic density.

In the case k = 0 we get the density denoted by
f2,0 = f1,0 ∗ f1,0 in [37], namely

x/(2 sinh(πx/2))

which we recognize as the density mentioned earlier.

It may be appropriate to notice the relations
between the densities f1,0 and f2,0 and the Gamma
function. One has

π/ cos(π/2x) = |Γ(1/2 + ix/2)|2

and

πx/(2 sinh(π/2x)) = |Γ(1 + ix/2)|2

A final word in connection with SL(2, R): one
can do all of this for real values of k greater or equal
to −1/2 and obtain also a family of non-polynomial
eigenfunctions, thus extending some of the results in
[34] .

12 The Truska, Meixner, Pollaczek

polynomials
Restricting to the case when the orthogonality
measure is even, the Meixner polynomials satisfy the
recursion relation

Mn(x) = xMn−1(x)+(n−1)(k2+(n−2)κ)Mn−2(x).

Here the quantities κ and k2 appear explicitly, see
(5.4), in the original paper of J. Meixner. The
appropriate reference is [39].

When κ = −1 and 2k + 2 = −k2 we get the
recursion given earlier for the polynomials qj [k](x).

In 1949-1950 F. Pollaczek published a few notes
in C. R. Acad. Sci. Paris, where he introduced
some polynomials that generalize the ultraspherical or
Gegenbauer polynomials.

These polynomials satisfy the recursion

nP λn (x) = 2xP λn−1(x)− (n+ 2λ− 2)P λn−2(x).

They have a nice Hypergeometric expression

P λn (x) = (2)λn/n!(i
n)2F1(−n, λ+ ix, 2λ, 2).

Our insistence on even densities implies that the
standard parameter φ that appears in more general
expressions for the Pollaczek polynomials is chosen
to be π/2. The appropriate reference is [40].

In fact F. Pollaczek rediscovered in 1950 the
polynomials that J. Meixner had found in 1934.

Other people came to similar results too, see [41]
and [42].

While preparing this note another piece of good
luck came my way. A very nice paper, [43], reveals
the fact that even Meixner had only rediscovered his
polynomials. L. Truksa, had already discovered them
a few years earlier. It is interesting to note that these
papers have the word “hypergeometric” in their title.
The appropriate references are [44], [45] and [46].

For more uses of these polynomials, see for
instance [47] and [48].

These polynomials play a role in fields such
as financial mathematics, giving rise to interesting
martingales, [49] and [50].

With a bit of creativity one can consider the
Meixner-Pollaczek polynomials as bispectral
(with one operator of infinite order) and then
ask the question if appropriate versions of
”time-and-band-limiting” in this case will exhibit
the commutativity miracle that the Bell Labs group
discovered and exploited more than sixty years ago.

It is of interest to notice that the polynomials of
Meixner and Pollaczek have been used in subjects as
(apparently) diverse as FinancialMathematics and the
Harmonic analysis related to the Lie group SU(1, 1).
This group is isomorphic to the group SL(2, R)
mentioned above.

A final comment: I think that Slepian, Landau
and Pollak, who started this game by looking at an
important problem in communication theory, could be
amused to see that over the years it has made contact
with many other parts of mathematics and physics.
For an extreme example, see [51].
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